Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Широтная зональность



Региональная и локальная дифференциация эпигеосферы

Широтная зональность

Дифференциация эпигеосферы на геосистемы различных порядков определяется неодинаковыми условиями ее развития в разных частях. Как уже отмечалось, существуют два главных уровня физико-географической дифференциации — региональный и локальный (или топологический), в основе которых лежат глубоко различные причины.

Региональная дифференциация обусловлена соотношением двух главнейших внешних по отношению к эпигеосфере энергетических факторов — лучистой энергии Солнца и внутренней энергии Земли. Оба фактора проявляются неравномерно как в пространстве, так и во времени. Специфические проявления того и другого в природе эпигеосферы и определяют две наиболее общие географические закономерности — зональность и азональность.

Под широтной (географической, ландшафтной) зональностью 1

подразумевается закономерное изменение физико-географических процессов, компонентов и комплексов (геосистем) от экватора к полюсам. Первичная причина зональности — неравномерное распределение коротковолновой радиации Солнца по широте вследствие шарообразности Земли и изменения угла падения солнечных лучей на земную поверхность. По этой причине на единицу площади приходится неодинаковое количество лучистой энергии Солнца в зависимости от широты. Следовательно, для существования зональности достаточно двух условий — потока солнечной радиации и шарообразности Земли, причем теоретически распределение этого потока по земной поверхности должно иметь вид математически правильной кривой (рис. 5, Ra). В действительности, однако, широтное распределение солнечной энергии зависит и от некоторых других факторов, имеющих также внешнюю, астрономическую, природу. Один из них — расстояние между Землей и Солнцем.

По мере удаления от Солнца поток его лучей становится все слабее, и можно представить себе такое расстояние (например, на какое отстоит от Солнца планета Плутон), при котором разница

 
1Далее зту закономерность будем называть просто зональностью.


Рис. 5. Зональное распределение солнечной радиации:

Ra— радиация на верхней границе атмосферы; суммарная радиация: Rcc— на. поверхности суши, Rco— на поверхности Мирового океана, Rcз— средняя для поверхности земного шара; радиационный баланс: Rс— на поверхности суши, Rо— на поверхности океана, Rз— средняя для поверхности земного шара

между экваториальными и полярными широтами в отношении инсоляции теряет свое значение — везде окажется одинаково холодно (на поверхности Плутона расчетная температура около — 230° С). При слишком большом приближении к Солнцу, напротив, во всех частях планеты оказалось бы чрезмерно жарко. В обоих крайних случаях невозможно существование ни воды в жидкой фазе, ни жизни. Земля оказалась наиболее «удачно» расположенной планетой по отношению к Солнцу.

Масса Земли также влияет на характер зональности, хотя и кос-


венно: она позволяет нашей планете (в отличие, например, от «легкой» Луны) удерживать атмосферу, которая служит важным фактором трансформации и перераспределения солнечной энергии.

Существенную роль играет наклон земной оси к плоскости эклиптики (под углом около 66,5°), от этого зависит неравномерное поступление солнечной радиации по сезонам, что сильно усложняет зональное распределение тепла, а

также влаги и обостряет зональные контрасты. Если бы земная ось была

перпендикулярна плоскости эклиптики, то каждая параллель получала бы в течение всего года почти одинаковое количество солнечного тепла и на Земле практически не было бы сезонной смены явлений.

Суточное вращение Земли, обусловливающее отклонение движущихся тел, в том числе воздушных масс, вправо в северном полушарии и влево — в южном, также вносит дополнительные усложнения в схему зональности.

Если бы земная поверхность была сложена каким-либо одним веществом и не имела неровностей, распределение солнечной радиации оставалось бы строго зональным, т.е., несмотря на осложняющее влияние перечисленных астрономических факторов, ее количество изменялось бы строго по широте и на одной параллели было бы одинаковым. Но неоднородность поверхности земного шара — наличие материков и океанов, разнообразие рельефа и горных пород и т. д.— обусловливает нарушение математически регулярного распределения потока солнечной энергии. Поскольку солнечная энергия служит практически единственным источником физических, химических и биологических процессов на земной поверхности, эти процессы неизбежно должны иметь зональный характер. Механизм географической зональности очень сложен, она проявляется далеко не однозначно в разной «среде», в различных компонентах, процессах, а также в разных частях эпигеосферы. Первым непосредственным результатом зонального распределения лучистой энергии Солнца является зональность радиационного баланса земной поверхности. Однако уже в распределении приходящей радиации мы

наблюдаем явное нарушение строгого соответствия с широтой. На рис. 51хорошо видно, что максимум приходящей к земной поверхности суммарной радиации отмечается не на экваторе, чего следовало бы ожидать теоретически,

а на пространстве между 20-й и 30-й параллелями в обоих полушариях —

северном и южном. Причина этого явления состоит в том, что на данных широтах атмосфера наиболее прозрачна для солнечных лучей (над экватором в атмосфере много облаков, которые отражают солнечные

1В СИ энергия измеряется в джоулях, однако до недавнего времени тепловую энергию было принято измерять в калориях. Поскольку во многих опубликованных географических работах показатели радиационного и теплового режимов выражены в калориях (или килокалориях), приводим следующие соотношения: 1 Дж = 0,239 кал; 1 ккал = 4,1868*103Дж; 1 ккал/см2= 41,868

М Дж/м2.


лучи, рассеивают и частично поглощают их). Над сушей контрасты в прозрачности атмосферы особенно значительны, что находит четкое отражение в форме соответствующей кривой. Таким образом, эпигеосфера не пассивно, автоматически реагирует на поступление солнечной энергии, а по- своему перераспределяет ее. Кривые широтного распределения радиационного баланса несколько более сглажены, но они не являются простой копией теоретического графика распределения потока солнечных лучей. Эти кривые не строго симметричны; хорошо заметно, что поверхность океанов характеризуется более высокими цифрами, чем суша. Это также говорит об активной реакции вещества эпигеосферы на внешние энергетические воздействия (в частности, из-за высокой отражающей способности суша теряет значительно больше лучистой энергии Солнца, чем океан).

Лучистая энергия, полученная земной поверхностью от Солнца и преобразованная в тепловую, затрачивается в основном на испарение и на теплоотдачу в атмосферу, причем величины этих расходных статей

радиационного баланса и их соотношения довольно сложно изменяются по

широте. И здесь мы не наблюдаем кривых, строго симметричных для суши и

океана (рис. 6).

Важнейшие следствия неравномерного широтного распределения тепла —

зональность воздушных масс, циркуляции атмосферы и влагооборота. Под влиянием неравномерного нагрева, а также испарения с подстилающей поверхности формируются воздушные массы, различающиеся по своим температурным свойствам, влагосодержанию, плотности. Выделяют четыре основных зональных типа воздушных масс: экваториальные (теплые и влажные), тропические (теплые и сухие), бореальные, или массы умеренных широт (прохладные и влажные), и арктические, а в южном полушарии антарктические (холодные и относительно сухие). Неодинаковый нагрев и вследствие этого различная плотность воздушных масс (разное атмосферное давление) вызывают нарушение термодинамического равновесия в тропосфере и перемещение (циркуляцию) воздушных масс.

Если бы Земля не вращалась вокруг оси, воздушные потоки в атмосфере имели бы очень простой характер: от нагретых приэкваториальных широт воздух поднимался бы вверх и растекался к полюсам, а оттуда возвращался бы к экватору в приземных слоях тропосферы. Иначе говоря, циркуляция должна была иметь меридиональный характер и у земной поверхности в северном полушарии постоянно дули бы северные ветры, а в южном — южные. Но отклоняющее действие вращения Земли вносит в эту схему существенные поправки. В результате в тропосфере образуется несколько циркуляционных зон (рис. 7). Основные из них соответствуют четырем зональным типам воздушных масс, поэтому в каждом полушарии их получается по четыре: экваториальная, общая для северного и южного полушарий (низкое давление, штили, восходящие потоки воздуха), тропическая (высокое давление, восточные ветры), умеренная


Рис. 6. Зональное распределение элементов радиационного баланса:

1 — вся поверхность земного шара, 2 — суша, 3 — океан; LE — затраты тепла на

испарение, Р — турбулентная отдача тепла в атмосферу

(пониженное давление, западные ветры) и полярная (пониженное давление, восточные ветры). Кроме того, различают по три переходные зоны — субарктическую, субтропическую и субэкваториальную, в которых типы циркуляции и воздушных масс сменяются по сезонам вследствие того, что летом (для соответствующего полушария) вся система циркуляции атмосферы смещается к «своему» полюсу, а зимой — к экватору (и противоположному полюсу). Таким образом, в каждом полушарии можно выделить по семь циркуляционных зон.

Циркуляция атмосферы — мощный механизм перераспределения тепла и влаги. Благодаря ей зональные температурные различия на земной поверхности сглаживаются, хотя все-таки максимум приходится не на экватор, а на несколько более высокие широты северного полушария (рис. 8), что особенно четко выражено на поверхности суши (рис. 9).

Зональность распределения солнечного тепла нашла свое выра-


Рис. 7. Схема общей циркуляции атмосферы:

1 — направление ветра, н — низкое давление, в — высокое дав-

ление

жение в традиционном представлении о тепловых поясах Земли. Однако континуальный характер изменения температуры воздуха у земной поверхности не позволяет установить четкую систему поясов и обосновать критерии их разграничения. Обычно различают следующие пояса: жаркий (со средней годовой температурой выше 20° С), два умеренных (между годовой изотермой 20° С и изотермой самого теплого месяца 10°С) и два холодных (с температурой самого теплого месяца ниже 10°); внутри последних иногда выделяют «области вечного мороза» (с температурой самого теплого месяца ниже 0° С). Эта схема, как и некоторые ее варианты, имеет чисто условный характер, и ландшафтоведческое значение ее невелико уже в силу крайнего схематизма. Так, умеренный пояс охватывает огромный температурный интервал, в который укладывается целая зима ландшафтных зон — от тундровой до пустынной. Заметим, что подобные температурные пояса не совпадают с циркуляционными,

а также, как будет показано далее, с поясами увлажнения.

С зональностью циркуляции атмосферы тесно связана зональность влагооборота и увлажнения. Это отчетливо проявляется в распределении атмосферных осадков (рис. 10). Зональность распреде-



Рис. 8. Зональное распределение температуры воздуха на поверхности земного шара: I — январь, VII — июль


Рис. 9. Зональное распределение тепла в уме-

ренно континентальном секторе северного полушария:

t — средняя температура воздуха в июле,

сумма температур за период со средними суточны-

ми температурами выше 10° С


ления осадков имеет свою специфику, своеобразную ритмичность: три максимума (главный — на экваторе и два второстепенных в умеренных широтах) и четыре минимума (в полярных и тропических широтах). Количество осадков само по себе не определяет условий увлажнения или влагообеспеченности природных процессов и ландшафта в целом. В степной зоне при 500 мм годовых осадков мы говорим о недостаточном увлажнении, а в тундре при 400 мм — об избыточном. Чтобы судить об увлажнении, нужно знать не только количество влаги, ежегодно поступающей в геосистему, но и то количество, которое необходимо для ее оптимального функционирования. Наилучшим показателем потребности во влаге служит испаряемость, т. е. количество воды, которое может испариться с земной поверхности в данных климатических условиях при допущений, что запасы влаги не ограниченны. Испаряемость — величина теоретическая. Ее


Рис. 10. Зональное распределение атмосферных осадков, испаряемости и коэффи-

циента увлажнения на поверхности суши:

1 — средние годовые осадки, 2 — средняя годовая испаряемость, 3 — превышение осадков над испаряемостью,

4 — превышение испаряемости над осадками, 5 — коэффициент увлажнения (по Высоцкому — Иванову)

следует отличать от испарения, т. е. фактически испаряющейся влаги, величина которой ограничена количеством выпадающих осадков. На суше испарение всегда меньше испаряемости.

На рис. 10 видно, что широтные изменения осадков и испаряемости не совпадают между собой и в значительной степени даже имеют противоположный характер. Отношение годового количества осадков к

годовой величине испаряемости может служить показателем климатического

увлажнения. Этот показатель впервые ввел Г. Н. Высоцкий. Еще в 1905 г. он использовал его для характерисТики природных зон европейской России. Впоследствии ленинградский климатолог Н. Н. Иванов построил изолинии этого отношения, которое назвал коэффициентом увлажнения (К), для всей суши Земли и показал, что границы ландшафтных зон совпадают с определенными значениями К: в тайге и тундре он превышает 1, в лесостепи равен


1,0—0,6, в степи — 0,6 — 0,3, в полупустыне — 0,3 — 0,12, в пустыне —

менее 0,12 1.

На рис. 10 схематично показано изменение средних значений коэффициента увлажнения (на суше) по широте. На кривой имеются четыре критические точки, где К переходит через 1. Величина, равная 1, означает, что условия увлажнения оптимальны: выпадающие осадки могут (теоретически) полностью испариться, проделав при этом полезную «работу»; если их

«пропустить» через растения, они обеспечат максимальную продукцию биомассы. Не случайно в тех зонах Земли, где К близок к 1, наблюдается наиболее высокая продуктивность растительного покрова. Превышение осадков над испаряемостью (К > 1) означает, что увлажнение избыточное: выпадающие осадки не могут полностью вернуться в атмосферу, они стекают по земной поверхности, заполняют впадины, вызывают заболачивание. Если осадки меньше испаряемости (К < 1), увлажнение недостаточное; в этих условиях обычно отсутствует лесная растительность, биологическая продуктивность низка, резко падает величина стока,.в почвах развивается засоление.

Надо заметить, что величина испаряемости определяется в первую очередь запасами тепла (а также влажностью воздуха, которая, в свою очередь, тоже зависит от термических условий). Поэтому отношение осадков к испаряемости можно в известной мере рассматривать как показатель соотношения тепла и влаги, или условий тепло- и водообеспеченности природного комплекса (геосистемы). Существуют, правда, и другие способы выражения соотношений тепла и влаги. Наиболее известен индекс сухости, предложенный М. И. Будыко и А. А. Григорьевым: R/Lr, где R — годовой радиационный баланс, L

скрытая теплота испарения, r — годовая сумма осадков. Таким образом, этот индекс выражает отношение «полезного запаса» радиационного тепла к количеству тепла, которое нужно затратить, чтобы испарить все атмосферные осадки в данном месте.

По физическому смыслу радиационный индекс сухости близок к коэффициенту увлажнения Высоцкого — Иванова. Если в выражении R/Lr разделить числитель и знаменатель на L, то мы получим не что иное, как

отношение максимально возможного при данных радиационных условиях

испарения (испаряемости) к годовой сумме осадков, т. е. как бы перевернутый коэффициент Высоцкого — Иванова — величину, близкую к 1/К. Правда, точного совпадения не получается, поскольку R/L не вполне соответствует испаряемости, и в силу некоторых других причин, связанных с особенностями расчетов обоих показателей. Во всяком случае, изолинии индекса сухости также в общих чертах совпадают с границами ландшафтных зон, но в зонах избыточно влажных величина индекса получается меньше 1, а в аридных зонах — больше 1.

1См.: Иванов Н. Н. Ландшафтно-климатические зоны земного шара// Записки

Геогр. об-ва СССР. Нов. серия. Т. 1. 1948.


От соотношения тепла и увлажнения зависит интенсивность многих других физико-географических процессов. Однако зональные изменения тепла и увлажнения имеют разную направленность. Если запасы тепла в общем нарастают от полюсов к экватору (хотя максимум несколько смещен от экватора в тропические широты), то увлажнение изменяется как бы ритмически, образуя «волны» на широтной кривой (см. рис. 10). В качестве самой первичной схемы можно наметить несколько главных климатических поясов по соотношению теплообеспеченности и увлажнения: холодные влажные (к северу и к югу от 50°), теплые (жаркие) сухие (между 50° и 10°) и жаркий влажный (между 10° с. ш. и 10° ю. ш.).

Зональность выражается не только в среднем годовом количестве тепла и влаги, но и в их режиме, т. е. во внутригодовых изменениях. Общеизвестно, что экваториальная зона отличается наиболее ровным температурным режимом, для умеренных широт типичны четыре термических сезона и т. д. Разнообразны зональные типы режима осадков: в экваториальной зоне осадки выпадают более или менее равномерно, но с двумя максимумами, в субэкваториальных широтах резко выражен летний максимум, в средиземноморской зоне— зимний максимум, для умеренных широт характерно равномерное распределение с летним максимумом и т. д. Климатическая зональность находит отражение во всех других географических явлениях — в процессах стока и гидрологическом режиме, в процессах заболачивания и формирования грунтовых вод, образования коры выветривания и почв, в миграции химических элементов, в органическом мире. Зональность отчетливо проявляется в поверхностной толще океана (табл. 1). Географическая зональность находит яркое выражение в органическом мире. Не случайно ландшафтные зоны получили свои названия большей частью по характерным типам растительности. Неменее выразительна зональность почвенного покрова, которая послужила В. В. Докучаеву отправным пунктом для разработки учения о зонах природы, для определения зональности как

«мирового закона».

Иногда еще встречаются утверждения, будто в рельефе земной поверхности и геологическом фундаменте ландшафта зональность не проявляется, и эти компоненты называют «азональными». Делить географические компоненты на

«зональные» и «азональные» неправомерно, ибо в любом из них, как мы увидим в дальнейшем, сочетаются как зональные черты, так и азональные (мы пока не касаемся последних). Рельеф в этом отношении не составляет исключения. Как известно, он формируется под воздействием так называемых эндогенных факторов, имеющих типично азональную природу, и экзогенных, связанных с прямым или косвенным участием солнечной энергии (выветривание, деятельность ледников, ветра, текучих вод и т. д.). Все процессы второй группы имеют зональный характер, и создаваемые ими формы рельефа, называемые скульптурными





Дата публикования: 2015-01-23; Прочитано: 1720 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...