Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства числовых последовательностей



Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность { yn } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < yn < yn +1 < ….

2. Определение.Последовательность { yn } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > yn > yn +1 > ….

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; yn = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T. Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

yn = f(n).

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; yn = yn –2 + yn –1, если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n.

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

Иными словами, число пар кроликов создает ряд, каждый член в котором — сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа — числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них — филлотаксис (листорасположение) — правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. аn=2n+1/2n

Решение:

аn=2n+1/2n

Ответ:

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, аn =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4n +1, аn =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция — это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека — его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем — у Лакруа (1806 год) — уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

x x1 x2 x3 x4
y y1 y2 y3 y4

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства: точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки: неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x)∣ y =√1−cos2(x) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x)={ f 1(x), xD 1 fn (x), xDnnk =1 Dk = D (f). Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀ x ∈Дсопоставляется единственное y, такое, что F (x, y)=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x, y)∈ f задается с помощью пары функций x =ϕ(t), y =ψ(t) где tM.





Дата публикования: 2015-02-03; Прочитано: 3689 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...