Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Общие принципы организации и контроля метаболизма на клеточном и организменном уровне. Энергетика биохимических реакций, перенос энергии в клетках



Обмен веществ и энергии — совокупность процессов превращения веществ и энергии, происходящих в живых организмах, и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергии является основой жизнедеятельности организмов и принадлежит к числу важнейших специфических признаков живой материи, отличающих живое от неживого. В обмене веществ, или метаболизме, обеспеченном сложнейшей регуляцией на разных уровнях, участвует множество ферментных систем. В процессе обмена поступившие в организм вещества превращаются в собственные вещества тканей и в конечные продукты, выводящиеся из организма. При этих превращениях освобождается и поглощается энергия.

Клеточный метаболизм выполняет четыре основные специфические функции: извлечение энергии из окружающей среды и преобразование ее в энергию макроэргических (высокоэргических) соединений в количестве, достаточном для обеспечения всех энергетических потребностей клетки; образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений, являющихся предшественниками высокомолекулярных компонентов клетки; синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из этих предшественников; синтез и разрушение специальных биомолекул, образование и распад которых связаны с выполнением специфических функций данной клетки.

Регуляция обмена веществ и энергии. Клеточный метаболизм характеризуется высокой устойчивостью и в то же время значительной изменчивостью. Оба эти свойства, составляющие диалектическое единство, обеспечивают постоянное приспособление клеток и организмов к меняющимся условиям окружающей и внутренней среды. Так, скорость катаболизма определяется потребностью в энергии в каждый данный момент. Точно так же скорость биосинтеза клеточных компонентов определяется нуждами данного момента. Клетка, например, синтезирует аминокислоты именно с такой скоростью, которая достаточна для того, чтобы обеспечить возможность образования минимального количества необходимого ей белка. Подобная экономичность и гибкость метаболизма возможна лишь при наличии достаточно тонких и чутких механизмов его регуляции. Регуляция метаболических процессов осуществляется на разных уровнях возрастающей сложности. Простейший тип регуляции затрагивает все основные параметры, влияющие на скорость ферментативных реакций. К этим параметрам относятся рН среды, концентрация кофермента, субстрата, продукта реакции, наличие активаторов или ингибиторов и т.д. Изменение каждого из них может увеличить или уменьшить скорость реакции. Например, накопление кислых продуктов может сдвинуть рН среды за пределы значений, оптимальных для данного фермента, и таким образом затормозить ферментативный процесс. Нередко ингибитором фермента является сам субстрат и наличие его в высокой концентрации может вызвать остановку реакции.

У человека и высших животных существуют еще два уровня, два механизма регуляции обмена веществ и энергии, которые отличаются тем, что связывают между собой метаболизм, совершающийся в разных тканях и органах, и таким образом направляют и приспосабливают его для выполнения функций, присущих не отдельным клеткам, а всему организму в целом. Одним из таких механизмов управляет эндокринная система. Гормоны, вырабатываемые железами внутренней секреции, служат химическими медиаторами, стимулирующими или подавляющими определенные метаболические процессы в других тканях или органах. Например, когда поджелудочная железа начинает вырабатывать меньше инсулина, в клетки поступает меньше глюкозы, что влечет за собой ряд вторичных метаболических эффектов, в частности уменьшение биосинтеза жирных кислот из глюкозы и усиление образования кетоновых тел в печени. Противоположное инсулину действие оказывает соматотропный гормон (гормон роста).

Вторым уровнем регуляции, характерным для человека и высших животных, является нервная регуляция, представляющая собой самый высший уровень регуляции, наиболее совершенную ее форму. Нервная система, в частности ее центральные отделы, выполняет в организме высшие интегративные функции. Получая сигналы из окружающей среды и от внутренних органов, ц.н.с. преобразует их в нервные импульсы и направляет их к тем органам, изменение скорости метаболизма в которых необходимо в данный момент для выполнения определенной функции. Чаще всего свою регулирующую роль нервная система осуществляет через железы внутренней секреции, усиливая или подавляя поступление гормонов в кровь.

Нормальное протекание метаболических реакций на молекулярном уровне обусловлено гармоничным сочетанием процессов катаболизма и анаболизма. При нарушении катаболических процессов прежде всего возникают энергетические трудности, нарушаются регенерация АТФ, а также поступление необходимых для биосинтетических процессов исходных субстратов анаболизма. В свою очередь, первичное или связанное с изменениями процессов катаболизма повреждение анаболических процессов ведет к нарушению воспроизведения функционально важных соединений — ферментов, гормонов и др. Нарушение различных звеньев метаболических цепей неравнозначно по своим последствиям. Наиболее существенные, глубокие патологические изменения катаболизма происходят при повреждении системы биологического окисления при блокаде ферментов тканевого дыхания, гипоксии и др. или повреждении механизмов сопряжения тканевого дыхания и окислительного фосфорилирования (например, разобщение тканевого дыхания и окислительного фосфорилирования при тиреотоксикозе). В этих случаях клетки лишаются основного источника энергии, почти все окислительные реакции катаболизма блокируются или теряют способность аккумулировать освобождающуюся энергию в молекулах АТФ. При ингибировании реакций цикла трикарбоновых кислот выработка энергии в процессе катаболизма сокращается примерно на две трети. При нарушении нормального течения гликолитических процессов (гликолиза, гликогенолиза) организм лишается способности адаптироваться к гипоксии, что особенно отражается на функционировании мышечной ткани. Нарушение использования углеводов, уникальных метаболических источников энергии в условиях недостатка кислорода, является одной из причин существенного снижения мышечной силы у больных сахарным диабетом. Ослабление гликолитических процессов затрудняет метаболическое использование углеводов, ведет к гипергликемии, переключению биоэнергетики на липидные и белковые субстраты, к угнетению цикла трикарбоновых кислот в результате недостатка щавелево-уксусной кислоты. Возникают условия для накопления недоокисленных метаболитов — кетоновых тел, усиливается распад белков, интенсифицируется глюконеогенез. Развиваются ацетонемия, азотемия, ацидоз.

Роль гормонов в обеспечении межклеточной сигнализации. Трансмембранная передача сигналов в клетку. Мембранные и внутриклеточные рецепторы. Механизмы действия гормонов различных классов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий.

Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора.

Если сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:

-взаимодействие рецептора с сигнальной молекулой (первичным посредником);

-активация мембранного фермента, ответственного за образование вторичного посредника;

-образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАТ или Са2+;

-активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказьюают влияние на активность внутриклеточных процессов.

Несмотря на огромное разнообразие сигнальных молекул, рецепторов и процессов, которые они регулируют, существует всего несколько механизмов трансмембранной передачи информации: с использованием аденилатциклазной системы, инозитолфосфатной системы, каталитических рецепторов, цитоплазматических или ядерных рецепторов.

К 1ТМС-рецепторам относятся гуанилатциклазы, которые образуют цГМФ из ГТФ.

1й тип: Гуанилатциклаз локализуется в плазматической мембране, активируется внеклеточными Лигандами (Атрионатрийуретический фактор)

2 тип: цитозольный, активируемый оксидом азота, который вызывает расслабление гладкой мускулатуры сосудов, в т.ч. коронарных.

Присоединение гормона активирует 1ТМС рецептор. Гормонорецепторный комплекс проявляет гуанилатциклазную активность, которая помогает добиться получения цГМФ из ГТФ. цГМФ как вторичный посредник активирует протеинкиназу С, которая фосфолирирует (Ф) остатки серина и треонина в белках-мишенях, что активирует белки. цГМФ является активатором фосфодиэстераз, которыее катализируют их распад. цАМФ, тоесть ЦГМФ и цАМФ являются антагонистами. Конечный эффект цГМФ проявляется в изменении транспорта ионов и воды в почках и кишечнике. цГМФ способствует расслаблению миокарда, а в палочках и колбочках стимулирует открытие ионных каналов.

Самая распространенная группа 1ТМС рецепторов являются рецепторные тирозин-киназы, в их структуре имеется 4 домена (внеклеточный (связывает гормон), трансмембранный, внутриклеточный (с тирозин-киназной активностью), регуляторный)

Важнейшей Т-К являеся рецептор инсулина, его присоединение вызывает автофосфолирирование киназного домена, что приводит к усилению Ф и активации инсулинрецепторного субстрата (IRS-1) Далее включается каскад реакций, усиливается гормональный сигнал, происходит повышение активности протеинкиназ и изменение активности многих ферментов.

Передача сигнала с участие 1ТМС рецепторов, в рецепторе имеются выключатели, это –RAS белки, которые относятся к семейству мономерных ГТФаз, они м.б. активны, если связаны с ГТФ, и дезактивируются при его гидролизе. Активность регулируют белки –БАГ (белок, активирующий ГТФазу) –SOS (белок, высвобождающий гуаниловые нуклеотиды)

Механизм действия гормонов, взаимодействующих с внутриклеточными рецепторами

Вит Д, ретиноевая к-та, стероидные гормоны и териоидные гормоны взаимодействуют с внутриклеточными рецепторами, поскольку их гидрофобные молекулы свободно диффундируют через плазматическую мембрану

Рецепторы делят на:

-рецепторы стероидных гормонов (минералкортикоидов, андрогенов, прогестерона)

-рецепторы тиреоидных гормонов в т.ч. вит Д и ретиноевой к-ты (находятсяся в цитозоле) они образуют комплексы с белками теплового шока, которые присоединяются к рецептору т.о. что закрывают его ДНК-связывающий домен. Сам рецептор представляет собой комплекс из основного и кислого белка, каждый белок связывает 1 молекулу гормона. Комплекс основного белка и гормона облегчает процесс транскрипции, связываясь с некодирующей цепью ДНК. Рецепторы тиреоидных гормонов находятся в ядре, связанном в хроматиновом состоянии (за исключением рецепторов эстрогенов, которые образуют в ядре комплексы с белками теплового шока) после взаимодействия с рецептором образуется активный комплекс, способный временно блокировать экспрессию генов.

Механизмы действия гормонов

Гормоны оказывают влияние на клетки-мишени.

Клетки-мишени- это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

В зависимости от строения гормона существуют два типа взаимодействия. Если молекула гормона липофильна, (например, стероидные гормоны), то она может проникать через липидный слой наружной мембраны клеток-мишеней. Если молекула имеет большие размеры или является полярной, то ее проникновение внутрь клетки невозможно. Поэтому для липофильных гормонов рецепторы находятся внутри клеток-мишеней, а для гидрофильных - рецепторы находятся в наружной мембране.

Надежность передачи сигнала обеспечивает очень высокое сродство гормона к своему белку-рецептору.

Что такое посредники, которые участвуют во внутриклеточной передаче гуморальных сигналов?

Существует два главных способа передачи сигнала в клетки-мишени от сигнальных молекул с мембранным механизмом действия:

-аденилатциклазная (или гуанилатциклазная) системы;

-фосфоинозитидный механизм.

Аденилатциклазная система.

Основные компоненты: мембранный белок-рецептор, G-белок, фермент аденилатциклаза, гуанозинтрифосфат, протеинкиназы.

Кроме того, для нормального функционирования аденилатциклазной системы, требуется АТФ.

Белок-рецептор, G-белок, рядом с которым располагаются ГТФ и фермент (аденилатциклаза) встроены в мембрану клетки. До момента действия гормона эти компоненты находятся в диссоциированнном состоянии, а после образования комплекса сигнальной молекулы с белком-рецептором происходят изменения конформации G-белка. В результате одна из субъединиц G-белка приобретает способность связываться с ГТФ. Комплекс "G-белок-ГТФ" активирует аденилатциклазу. Аденилатциклаза начинает активно превращать молекулы АТФ в ц-АМФ. ц-АМФ обладает способностью активировать особые ферменты - протеинкиназы, которые катализируют реакции фосфорилирования различных белков с участием АТФ. При этом в состав белковых молекул включаются остатки фосфорной кислоты. Главным результатом этого процесса фосфорилирования является изменение активности фосфорилированного белка. В различных типах клеток фосфорилированию в результате активации аденилат-циклазной системы подвергаются белки с разной функциональной активностью. Например, это могут быть ферменты, ядерные белки, мембранные белки. В результате реакции фосфорилирования белки могут становятся функционально активными или неактивными.

Активация аденилатциклазной систтемы длится очень короткое время, потому что G-белок после связывания с аденилатциклазой начинает проявлять ГТФ-азную активность. После гидролиза ГТФ G-белок восстанавливает свою конформацию и перестает активировать аденилатциклазу. В результате прекращается реакция образования цАМФ.

Некоторые вещества, обладающие ингибирующим действием на фосфодиэстеразу, (например, алкалоиды кофеин, теофиллин), способствуют сохранению и увеличению концентрации цикло-АМФ в клетке. Под действием этих веществ в организме продолжительность активации аденилатциклазной системы становится больше, т. е. усиливается действие гормона.

Кроме аденилатциклазной или гуанилатциклазной систем существует также механизм передачи информации внутри клетки-мишени с участием ионов кальция и инозитолтрифосфата.

Инозитолтрифосфат- это вещество, которое является производным сложного липида - инозитфосфатида. Оно образуется в результате действия специального фермента - фосфолипазы "С", который активируется в результате конформационных изменений внутриклеточного домена мембранного белка-рецептора.

Этот фермент гидролизует фосфоэфирную связь в молекуле фосфатидил-инозитол-4,5-бисфосфата и в результате образуются диацилглицерин и инозитолтрифосфат.

В работе фосфоинозитидного механизма передачи сигналов в клетке-мишени принимает участие специальный кальций-связывающий белок - кальмодулин. Это низкомолекулярный белок, на 30 % состоящий из отрицательно заряженных аминокислот (Глу, Асп) и поэтому способный активно связывать Са+2. Одна молекула кальмодулина имеет 4 кальций-связывающих участка. После взаимодействия с Са+2 происходят конформационные изменения молекулы кальмодулина и комплекс "Са+2-кальмодулин" становится способным регулировать активность (аллостерически угнетать или активировать) многие ферменты - аденилатциклазу, фосфодиэстеразу, Са+2,Мg+2-АТФазу и различные протеинкиназы.

В разных клетках при воздействии комплекса "Са+2-кальмодулин" на изоферменты одного и того же фермента (например, на аденилатциклазу разного типа) в одних случаях наблюдается активация, а в других - ингибирование реакции образования цАМФ. Такие различные эффекты происходят потому, что аллостерические центры изоферментов могут включать в себя различные радикалы аминокислот и их реакция на действие комплекса Са+2-кальмодулин будет отличаться.

Принято различать два механизма взаимодействия гормонов с клетками-мишенями:

-мембранный механизм - когда гормон связывается с рецептором на поверхности наружной мембраны клетки-мишени;

-внутриклеточный механизм - когда рецептор для гормона находится внутри клетки, т. е. в цитоплазме или на внутриклеточных мембранах.

Гормоны обладающие мембранным механизмом действия:

-все белковые и пептидные гормоны, а также амины (адреналин, норадреналин).

Внутриклеточным механизмом действия обладают:

-стероидные гормоны и производные аминокислот - тироксин и трийодтиронин.

Передача гормонального сигнала на клеточные структуры происходит по одному из механизмов. Например, через аденилатциклазную систему или с участием Са+2и фосфоинозитидов. Это справедливо для всех гормонов с мембранным механизмом действия. Но стероидные гормоны с внутриклеточным механизмом действия, которые обычно регулируют скорость биосинтеза белков и имеют рецептор на поверхности ядра клетки-мишени, не нуждаются в дополнительных посредниках в клетке.





Дата публикования: 2015-02-03; Прочитано: 2453 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...