Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Закон отрицания отрицания. 2 страница



6. Какова минимальная форма индуктивного постулата, который будет, если он истинен, делать правильными принятые научные выводы?

7. Имеется ли какое-либо основание — и если имеется, то какое — считать этот минимальный постулат истинным? Если же такого основания нет, то имеется ли тем не менее основание действовать так, как если бы оно было истинным?

Обсуждая все это, нет нужды помнить о неопределенности слова "вероятный", как оно обычно употребляется. Когда я говорю, что при определенных обстоятельствах "вероятно", что следующая а будет p, я надеюсь, что смогу интерпретировать это в соответствии с теорией конечной частоты. Если же я говорю, что индуктивный принцип "вероятно" истинен, я принужден употреблять слово "вероятно" для выражения высокой степени правдоподобия. Благодаря недостаточно отчетливому различению этих двух значений слова "вероятно" легко могут возникнуть разного рода смешения.

Споры и обсуждения, которыми мы займемся, имеют свою историю, которую можно считать начавшейся с Юма. По большому числу частных вопросов были получены определенные результаты; иногда эти вопросы сначала не признавались за частные. Но теперь соответствующее исследование сделало совершенно очевидным, что обсуждения технических вопросов, достигшие некоторых результатов, мало что дали для главной проблемы, которая остается, по существу такой же:

как ее сформулировал Юм.

. Теория Рейхенбаха.

Своеобразие теории вероятности Рейхенбаха состоит в том, что индукция включается в самое определение вероятности. Эта теория сводится к следующему (в несколько упрощенном виде).

Пусть дана статистическая последовательность — например, статистика жизней,— и пусть даны два пересекающих класса альфа и e, к которым принадлежат некоторые члены этой последовательности, тогда мы часто находим, что, когда число всех членов последовательности велико, процент членов класса р, которые являются членами класса а, остается приблизительно постоянным. Предположим, что когда число всех членов последовательности превосходит, скажем, 10000, оказывается, что отношение зарегистрированных р, которые суть а, никогда далеко не отходит от m/n и что эта рациональная дробь ближе к средне наблюдаемому отношению, чем всякая другая. Мы тогда "полагаем", что, сколько бы последовательность не продолжалась, это отношение всегда останется очень близким к m/n. Мы определяем вероятность того, что р есть а, как предел наблюденной частоты, когда число наблюдений бесконечно увеличивается, и в силу нашего "полагания" мы допускаем, что этот предел существует и находится поблизости от m/n, где m/n есть наблюденная частота в ее самом большом достижимом виде.

Рейхенбах подчеркивает, что никакое предложение не является достоверным; все только имеют ту или иную степень вероятности, и каждая степень вероятности есть предел частоты. Он признает, что как следствие этой доктрины предложения о перечисляемых предметах, посредством которых вычисляется частота, сами только вероятны. Возьмем, например, смертность; когда человек считается умершим, он может быть еще живым; следовательно, каждое предложение в статистике смертности сомнительно. Это значит, по определению, что запись смерти должна быть одной из последовательности записей, из которых некоторые правильны, другие — ошибочны. Но те, которые мы считаем правильными, являются только вероятно правильными и должны быть членами какой-либо новой последовательности. Все это Рейхенбах признает, но говорит, что на какой-то стадии мы прерываем бесконечный регресс и принимаем то, что он называется "слепым постулатом". "Слепой постулат" — это решение трактовать некоторые предложения как истинные, хотя мы и не имеем достаточного основания для этого.

В этой теории имеется два вида "слепых постулатов", именно: (1) крайние записи в статистической последовательности, которые мы рассматриваем как основоположные; (2) допущение, что частота, обнаруженная в конечном числе наблюдений, останется приблизительно постоянной, как бы число наблюдений ни увеличивалось. Рейхенбах считает свою теорию полностью эмпирической, потому что он не утверждает, что его "постулаты" истинны.

Меня сейчас не касается общая теория Рейхенбаха, которую я рассматривал выше. Сейчас меня интересует только его теория индукции. Суть его теории следующая: если его индуктивный постулат истинен, то предсказание возможно, если же он не истинен, то — невозможно. Следовательно, единственный способ, с помощью которого мы можем получить какую-либо вероятность в пользу одного, а не другого предсказания, заключается в предположении, что его постулат истинен. Я не хочу отрицать, что какой-то постулат необходим, если должна быть какая-то вероятность в пользу предсказаний, но я хочу отрицать, что требуемый постулат является постулатом Рейхенбаха.

Его постулат следующий: если даны два класса а и бета и если дано, что случаи альфа представлены во временной последовательности, и если оказывается, что после того, как исследовано достаточное число а, отношение тех а, которые являются р, всегда приблизительно остается m/n, тогда это отношение будет оставаться, сколько бы случаев а ни могло быть последовательно наблюдаемо.

Прежде всего мы можем заметить, что этот постулат только по видимости является более общим, чем тот, который применяется, когда все наблюдаемые а являются р. Ибо в гипотезе Рейхенбаха каждый отрезок последовательности членов альфа имеет то свойство, что около m/n его членов являются Р и что к этим отрезкам может быть применен более специализированный постулат. Мы, следовательно, можем ограничиться рассмотрением этого более специализированного постулата.

Постулат Рейхенбаха эквивалентен, следовательно, следующему; когда наблюдается большое число а и когда оказывается, что всего они суть р, мы будем предполагать, что все или почти все альфа суть бета. Это предположение необходимо (как он полагает) для определения вероятности и для всякого научного предсказания.

Я думаю, что можно показать ложность этого постулата. Допустим, что а1, a2,... a3 суть члены ос, которые наблюдались и оказались принадлежащими некоему классу р. Допустим, что an+1 есть следующий подлежащий наблюдению член ее. Если он тоже оказывается р, подставим вместо р класс, состоящий из р без аn+1. Но в отношении этого класса индукция не удается. Этот вид доказательства может быть, очевидно, расширен. Из этого следует, что для того, чтобы индукция имела какой-либо шанс быть действенной, а и р должны быть не какими угодно классами, а классами, имеющим определенные свойства или отношения. Я имею в виду не то, что индукция должна быть действительной, когда между а и р имеется соответствующее отношение, а только то, что в этом случае она может быть действительной, в то время как может быть доказано, что она ложна в ее общей форме.

Может показаться очевидным, что а и р не должны быть тем, что можно было бы назвать "искусственными классами". Я назвал бы вышеупомянутый класс бета без an+1 "искусственным" классом. Вообще говоря, под "искусственным" классом я имею в виду класс, который определяется, по крайней мере отчасти, посредством упоминания, что такой-то термин является или не является его членом. Таким образом, "человеческий род" — не искусственный класс, а "человеческий род, за исключением Сократа" есть искусственный класс. Если а1, а2,... an+1 суть n +1 членов а, впервые наблюденных, тогда а1, а2,... an имеют то свойство, что они не являются аn+1, но как бы велико ни было n, мы не должны индуктивно выводить, что an+1 имеет это свойство. Классы альфа и бета должны определяться по содержанию, а не через упоминание их членов. Всякое отношение, оправдывающее индукцию, должно быть отношением между понятиями, и поскольку различные понятия могут определять один и тот же класс, постольку может случиться, что есть пара понятии, которые индуктивно соотносятся и соответственно определяют альфа и бета, тогда как другие пары понятий, которые тоже определяют а и р, индуктивно не соотносятся. Например, из опыта можно вывести, что не имеющие перьев двуногие животные смертны, но нельзя вывести, что разумные существа, живущие на земле, смертны, несмотря на тот факт, что эти два понятия определяют один и тот же класс.

Математическая логика в ее современном развитии стремится всегда быть насколько возможно экстенциональной (extensional). Это, возможно, является более или менее случайной ее характеристикой, получающейся благодаря влиянию арифметики на мысли и цели представителей математической логики. Проблема же индукции, наоборот, требует интенциональной трактовки. Правда, классы а и (3, участвующие в индуктивном выводе, поскольку в нем участвуют а1, а2,... аn„ даются со стороны объема, но, за исключением этого момента, существенно то, что все же оба класса известны только по содержанию. Например, а может быть классом людей, в крови которых имеются определенные бациллы, ар— классом людей, обнаруживающих определенные симптомы. К сущности индукции относится то, что объемы этих двух классов не известны заранее. На практике мы считаем некоторые индукции заслуживающими проверки, а другие — не заслуживающими ее, и мы, по-видимому, руководствуемся чувством в отношении тех видов содержаний, которые должны, по-видимому, быть связаны.

Постулат индукции Рейхенбаха является, следовательно, и слишком общим, и слишком экстенциональным. Чтобы не быть явно ложным, он должен быть несколько более ограниченным и интенциональным.

Кое-что следует сказать относительно рейхенбаховской теории различных уровней частоты, приводящей к группе вероятных положений, которые являются "слепыми постулатами". Эта теория связана с его доктриной, что в логике понятие истины должно быть заменено понятием вероятности. Рассмотрим эту теорию на примере шанса, что некий шестидесятилетний англичанин умрет в этом году.

Первая стадия ясна: допуская, что регистрация смертей точна, мы делим число умерших в прошлом году на общее число шестидесятилетних. Но теперь мы вспоминаем, что каждая запись в статистике может быть ошибочной. Для оценки вероятности этого мы должны достать какую-нибудь подобную статистику, которая была тщательно исследована, и определить, какой процент ошибок она содержит. Затем мы вспоминаем, что те, которые думали, что они распознают ошибку, могли ошибиться, и мы приступаем к собиранию статистики ошибок об ошибках. На какой-то стадии в этом регрессе мы должны остановиться; но на чем бы мы ни остановились, мы должны по соглашению (условно) приписать некий "вес", который будет, предположительно, или достоверностью, или вероятностью, которые, по нашему предположению, являются результатом того, что мы провели наш регресс на одну ступень дальше.

Против этой процедуры, рассматриваемой как теория познания, имеются различные возражения.

Для начала скажем, что последние ступени в этом регрессе обычно гораздо более трудны и недостоверны, чем более ранние ступени; мы вряд ли, например, можем достичь той же самой степени точности в оценке ошибок официальной статистики, чем это достигнуто в самой официальной статистике.

Во-вторых, слепые постулаты, с которых мы должны начинать, являются попытками достичь наилучшего в отношении обеих областей: они служат той же цели, какой в моей системе служат данные, которые могут быть ошибочными; но называя их "постулатами", Рейхенбах старается избежать ответственности, связанной с признанием их "истинными". Я не вижу, какое он может иметь основание для предпочтения одного постулата другому, кроме того, что он думает, что один из них с большей вероятностью является истинным; а поскольку, по его собственному признанию, это не значит (когда мы находимся на стадии слепых постулатов), что имеется какая-либо известная частота, которая делает этот постулат вероятным, он вынужден вместо частоты искать какой-либо другой критерий для выбора среди предположений. Он не говорит нам, какой это может быть критерий, потому что он не видит в этом необходимости.

В-третьих, когда мы покидаем почву чисто практической необходимости в слепых постулатах для прекращения бесконечного регресса и стараемся понять чисто теоретически, что Рейхенбах может иметь в виду под вероятностью, мы запутываемся в неразрешимых осложнениях. На первой ступени мы говорим, что вероятность того, что а будет равна р, равна m1/n1; на второй ступени мы приписываем этому утверждению вероятность т2/n2 тем, что делаем его одним из какой-либо последовательности подобных утверждении; на третьей ступени мы приписываем вероятность m2/n3 утверждению, что имеется вероятность т2/n2 в пользу нашей первой вероятности m/п1; и так мы продолжаем без конца. Если бы этот бесконечный регресс мог быть осуществлен, то последняя вероятность в пользу правильности нашей первоначальной оценки m1/n1 была бы бесконечным произведением

которое, как можно думать, было бы нулем. Оказалось бы, следовательно, что в выборе оценки, которая является в высшей степени вероятной на первой ступени, мы почти наверняка ошибаемся; но в общем эта оценка останется наилучшей оценкой, возможной для нас.

Бесконечный регресс в самом определении "вероятного" нетерпим. Для того чтобы избежать его, мы должны признать, что каждый пункт (запись) в нашей первоначальной статистике или истинен, или ложен и что значение т1/n1, полученное для нашей первой вероятности, или правильно, или ложно; и действительно, мы должны применять как абсолютную дихотомию истинного или ложного к суждениям вероятности так же, как и к другим суждениям. Позиция Рейхенбаха в ее полном выражении сводится к следующему:

Есть предложение р1, скажем, "это альфа есть бета"

Есть предложение р2, говорящее, что P1 имеет вероятность.x1

Есть предложение р3, говорящее, что р2 имеет вероятность x2

Есть предложение р4, говорящее, что P3 имеет вероятность x3

Эта последовательность бесконечна и ведет — как следует думать — к предельному предложению, единственному, которое мы имеем право утверждать. Но я не вижу, как это предельное предложение может быть выражено. Затруднение здесь заключается в том, что в отношении всех членов последовательности, помещающихся перед предельным предложением, мы не имеем никакого основания, согласно принципам Рейхенбаха, рассматривать их как имеющих большую вероятность истинности, чем ложности; в действительности они не имеют вероятности, доступной для нашей оценки.

Я заключаю, что попытка обойтись без понятий "истинного" и "ложного" является ошибочной и что суждения вероятности по существу не отличаются от других суждений, а под падают наравне с ними под абсолютную дихотомию истинного-ложного.

Д. Выводы.

Индукция со времени Юма играла настолько большую роль в спорах о научном методе, что очень важно внести полную ясность в то, к чему — если я не ошибаюсь — приводят вышеприведенные доказательства.

Во-первых: в математической теории вероятности нет ничего, что оправдывало бы наше понимание как общей, так и частной индукции как вероятной, как бы при этом ни было велико установленное число благоприятных случаев.

Во-вторых: если не устанавливается никакое ограничение в отношении характера интенционального определения классов А и В, участвующих в индукции, то можно показать, что принцип индукции не только сомнителен, но и ложен. Это значит, что если дано, что n членов некоторого класса А принадлежит к некоторому другому классу В, то значения "В", для которых следующий член класса А не принадлежит к классу В, более многочисленны, чем значения, для которых следующий член принадлежит к В, если n не сильно отличается от полного числа вещей во вселенной.

В-третьих: то, что называется "гипотетической индукцией", в которой какая-либо общая теория рассматривается как вероятная, потому что все до сего времени наблюденные ее следствия подтверждались, не отличается сколько-нибудь существенно от индукции через простое перечисление. Ибо если p есть теория, о которой идет речь, А — класс относящихся к делу явлений и В — класс следствий р, тогда р эквивалентно утверждению 'все А суть В", и свидетельство в пользу р получается с помощью простого перечисления.

В-четвертых: для того, чтобы индуктивное доказательство было действенным, индуктивный принцип должен быть сформулирован с каким-либо неизвестным до сего времени ограничением. Научный здравый смысл на практике избегает различных видов индукции, в чем он, по-моему, прав. Но пока еще не сформулировано то, что руководит научным здравым смыслом.

В-пятых: научные выводы, если они в общем правильны, должны быть таковыми в силу какого-либо закона или законов природы, устанавливающих какое-либо синтетическое свойство действительного мира или несколько таких свойств. Истинность предложений, утверждающих такие свойства, не может быть сделана даже вероятной каким-либо доказательством из опыта, поскольку такие доказательства, когда они выходят за пределы зарегистрированного до сего времени опыта, зависят в своей правильности от тек самых принципов, о которых идет речь.

Остается только исследовать, что представляют собой эти принципы и в каком смысле — если тут можно говорить о каком-либо смысле — можно говорить, что мы знаем их.

Постулаты научного вывода

.

39. Дедукция как метод науки и его функции.

Дедукция (от лат. deductio - выведение) есть получение частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному.

Но особенно большое познавательное значение дедукции проявляется в том случае, когда в качестве общей посылки выступает не просто индуктивное обобщение, а какое-то гипотетическое предположение, например новая научная идея. В этом случае дедукция является отправной точкой зарождения новой теоретической системы. Созданное таким путем теоретическое знание предопределяет дальнейший ход эмпирических исследований и направляет построение новых индуктивных обобщений.

Получение новых знаний посредством дедукции существует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, пожалуй, единственной собственно дедуктивной наукой.

В науке Нового времени пропагандистом дедуктивного метода познания был видный математик и философ Р. Декарт.

Но, несмотря на имевшие место в истории науки и философии попытки оторвать индукцию от дедукции, противопоставить их в реальном процессе научного познания, эти два метода не применяются как изолированные, обособленные друг от друга. Каждый из них используется на соответствующем этапе познавательного процесса.

Более того, в процессе использования индуктивного метода зачастую “в скрытом виде” присутствует и дедукция. “Обобщая факты в соответствии с какими-то идеями, мы тем самым косвенно выводим получаемые нами обобщения из этих идей, причем далеко не всегда отдаем в себе в этом отчет. Кажется, что наша мысль движется прямо от фактов к обобщениям, т. е. что тут присутствует чистая индукция. На самом же деле, сообразуясь с какими-то идеями, иначе говоря, неявно руководствуясь ими в процессе обобщения фактов, наша мысль косвенно идет от идей к этим обобщениям, и, следовательно, тут имеет место и дедукция... Можно сказать, что во всех случаях, когда мы обобщаем, сообразуясь с какими-либо философскими положениями, наши умозаключения являются не только индукцией, но и скрытой дедукцией”.

Подчеркивая необходимую связь индукции и дедукции, Ф. Энгельс настоятельно советовал ученым: “Индукция и дедукция связаны между собой столь же необходимым образом, как синтез и анализ. Вместо того, чтобы односторонне превозносить одну из них до небес за счет другой, надо стараться каждую применять на своем месте, а этого можно добиться лишь в том случае, если не упускать из виду их связь между собой, их взаимное дополнение друг другом”.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результа­там-следствиям.

Умозаключение по дедукции строится по следующей схеме:

все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления кон­кретного содержания общепринятых посылок.

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследова­тель пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

Дедукция в научном познании. Немного об истории дедуктивного познания. Искусственные и естественные языки.

В отличие от индукции, похожей на дырявую трубку, по которой течет и теряется истинность, к дедукции, как уже отмечалось выше, обычно предъявляется требование полного переноса истинности от посылок к заключениям. В этом смысле дедукция всегда была символом наиболее строгих и обоснованных методов научного мышления. По аналогии с индукцией, о дедукции можно было бы говорить по крайней мере в двух основных смыслах - как о переходе от общего к частному (назовем этот вид дедукции дедукцией-1) и как о достоверном выводе (дедукция-2). Не всегда эти два понимания дедукции совпадают (случай совпадения видов дедукции как перехода от общего к частному и как достоверного вывода можно называть дедукцией -12), в связи с чем можно говорить о дедукции-1 - дедукции, являющейся переходом от общего к частному, но не представляющей из себя достоверного вывода, и о дедукции-2 - достоверном выводе, который, тем не менее, не является переходом от общего к частному.

По нашему мнению, однако, отличие дедукции от индукции во многом выражается сегодня в степени разработанности различных разделов логики. Индукция, как мы видели выше, таит в себе еще много неясного и проблематичного, это как бы менее разработанные, но активно развивающиеся сегодня разделы логики. Дедуктивная логика в этом смысле - это скорее наиболее разработанная часть логики вообще, которая исторически оказалась связанной с более простыми и базовыми логическими средствами мышления. С этой точки зрения мы будем придерживаться в этой главе не столько классификационного описания видов дедукции, что было бы более уместно в области, где еще отсутствуют глубокие теоретические обобщения, но попытаемся представить общий обзор дедуктивных методов познания как некоторых интегрированных систем мышления.

Основы дедуктивной логики были заложены еще в трудах древнегреческих философов и математиков. Здесь можно назвать такие славные имена, как имена Пифагора и Платона, Аристотеля и Евклида. Считается, что Пифагор одним из первых стал рассуждать в стиле доказательства того или иного утверждения, а не простого его провозглашения. В работах Парменида, Платона и Аристотеля сложились представления об основных законах правильного мышления. Древнегреческий философ Парменид впервые высказал ту замечательную мысль, что в основании подлинно научного мышления лежит некое неизменное начало ("единое"), которое продолжает сохраняться неизменным, как бы не менялась точка зрения мыслителя. Платон сравнивает единое со светом мысли, который продолжает пребывать неизменным, пока есть сама мысль. В более строгой и конкретной форме эта идея получает свое выражение в формулировке основных законов логики у Аристотеля. Аристотель считается по праву основателем логики как дедуктивной науки. Он впервые систематизирует основные приемы правильного мышления, обобщая достижения современных ему древнегреческих математиков. В работах Евклида применение этих приемов и законов к математическим наукам достигает высочайшего уровня, который становится идеалом дедуктивного мышления на века и тысячелетия в европейской культуре. Позднее формулировки дедуктивной логики все более оттачиваются, детализируются у стоиков, в средневековой схоластике. Но это время практически не прибавляет ничего принципиально нового к сложившейся у Аристотеля и Евклида системе дедуктивного метода. И лишь с возникновением новой науки в 16-17 веках вновь начинается переосмысление и развитие античного наследия. Французский философ и математик Рене Декарт выдвигает понятие переменной, формулирует идею и правила дедуктивного метода как общего метода решения уравнений - суждений, содержащих переменные. Декарт подчеркивает значение очевидности (L-статуса) посылок и правил вывода в дедуктивных умозаключениях. Немецкий философ Готфрид Лейбниц выдвигает идею универсального дедуктивного метода, на основе которого мыслители были бы в состоянии прекратить бесплодные споры и перейти к строгому вычислению истинности или ложности выдвигаемых ими положений. В работах немецкого философа Иммануила Канта провозглашается замысел построения некоторой "трансцендентальной дедукции", способной выходить за границы законов формальной логики. Наконец, в конце 19 века в работах английского ученого Джорджа Буля строго формулируется идея логической переменной и логических уравнений, постепенно оформляется новая структура, составляющая алгебру мысли и получившая название "булевой алгебры" по имени своего первооткрывателя. В 20-м веке дедуктивная логика становится разделом математики и начинает называться "математической логикой". Основные идеи и методы дедуктивного подхода получают совершенно строгое выражение средствами языка математики. С этих пор начинается бурный рост математической логики как нового направления математического знания, получившего название "метаматематика". Такое бурное и успешное развитие дедуктивной логики привело к формулировке понятия формальной дедуктивной (аксиоматической) системы, к рассмотрению структуры которой мы ниже вкратце и обратимся. Дедуктивная система - это область мышления и языка, в высокой степени обработанная средствами дедуктивной логики и получающая в связи с этим некоторый законченный и организованный вид.

В первую очередь формальная дедуктивная система представляет из себя некоторый искусственный язык, специально приспособленный для описания определенной математической структуры. Вкратце мы уже касались некоторых идей, связанных с дедуктивными системами, в параграфе первой главы первого раздела, посвященного логическим теориям, описывающим структуры. Здесь будет сделан еще один шаг в направлении более подробного описания средств современной дедуктивной логики.

Очень часто учащихся и неспециалистов вводит в заблуждение термин "формальный" в применении к логическим языкам дедуктивной логики. Сегодня логика, как и математика вообще, во многом строится с применением множества специальных символов ("значков"), которые кажутся бессмысленной абракадаброй несведущему человеку. Но в этом случае с равным успехом формальным можно называть, например, и язык нотной записи музыкальных произведений, который не менее понятен для непосвященного. Поэтому само по себе использование специального языка еще не означает чего-то обязательно "формального". Необходимо специально оговориться, в каком смысле искусственные языки логики и математики считаются формальными.

Под формальным можно понимать, по крайней мере, две вещи: во-первых, степень выражения в языковых средствах предмета языка (того, о чем говорит язык), во-вторых, степень общего, универсального, выражаемого языком. С первой точки зрения, обычные языки, например, русский, английский могут быть названы более формальными, чем язык математики. В самом деле, математический язык специально строится так, чтобы в структуре символов этого языка уже выражался предмет языка. Поэтому в математических языках форма и содержание языка гораздо более подобны друг другу, чем в языках обычных, и в этом смысле математические языки гораздо более содержательны. Вот почему можно порой работать с математическими знаками, не понимая их смысла (как это делается в компьютерах). Ведь уже в самой структуре математического знака заложен до некоторой степени закон его содержания. В разговорных языках на форму знаков (например, слов, букв) гораздо больше влияет природа пользователя этого языка, например, устройство гортани человека, позволяющей издавать фиксированный набор звуков. Поэтому в ненаучных языках больше разрыв между формой и содержанием знака, и в этом смысле они более формальны.





Дата публикования: 2015-02-03; Прочитано: 236 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.019 с)...