Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Службы безопасности, определенные Международной организацией стандартизации



Международной организации стандартизации (МОС) определены следующие службы безопасности:

1. аутентификация (подтверждение подлинности);

2. обеспечение целостности передаваемых данных;

3. засекречивание данных;

4. контроль доступа;

5. защита от отказов.

Первые три службы характеризуются различиями для виртуальных и дейтаграммных сетей, а последние две службы инварианты по отношению к этим сетям.

В виртуальных сетях используются протоколы информационного обмена типа виртуального соединения. Передача информации между абонентами организуется по виртуальному каналу и происходит в три этапа:

1. создание (установление) канала;

2. собственно передача;

3. уничтожение (разъединение) канала.

При этом сообщения разбиваются на одинаковые части (пакеты). Пакеты передаются по виртуальному каналу в порядке их следования в сообщении.

В дейтаграммных сетях реализуются дейтаграммные протоколы информационного обмена. Пакеты, принадлежащие одному и тому же сообщению, передаются от отправителя к получателю, в составе дейтаграмм независимо друг от друга и в общем случае по различным маршрутам, т.е. в сети они являются самостоятельными единицами информации. На приемном пункте из пакетов, поступивших по различным маршрутам и в разное время, составляется первоначальное сообщение.

Служба аутентификации, в виртуальных сетях называемая службой аутентификации одноуровневого объекта, обеспечивает подтверждение (опровержение) того, что объект, предлагающий себя в качестве отправителя сообщения по виртуальному каналу, является именно таковым как на этапе установления связи между абонентами, так и на этапе передачи сообщения. В дейтаграммных сетях эта служба называется службой аутентификации источника данных, передаваемых в виде дейтаграмм.

Службы целостности обеспечивают выявление искажений в передаваемых данных, вставок, повторов и уничтожение данных. Они разделяются по виду сетей, в которых они применяются (СБ в виртуальных и дейтаграммных сетях), по действиям, выполняемым при обнаружении аномальных ситуаций (с восстановлением данных или без восстановления), по степени охвата передаваемых данных (сообщение или дейтаграмма в целом либо их части, называемые выборочными полями).

Службы засекречивания обеспечивают секретность передаваемых данных: в виртуальных сетях — всего пересылаемого сообщения или только его выборочных полей, в дейтаграммных — каждой дейтаграммы или только отдельных ее элементов.

Служба засекречивания потока данных (трафика), являющаяся общей для виртуальных и дейтаграммных сетей, предотвращает возможность получения сведений об абонентах сети и характере использования сети.

Служба контроля доступа обеспечивает нейтрализацию попыток несанкционированного использования общесетевых ресурсов.

Службы защиты от отказов нейтрализуют угрозы отказов от информации со стороны ее отправителя и/или получателя.

5.Служба аутентификации, в виртуальных сетях называемая службой аутентификации одноуровневого объекта, обеспечивает подтверждение (опровержение) того, что объект, предлагающий себя в качестве отправителя сообщения по виртуальному каналу, является именно таковым как на этапе установления связи между абонентами, так и на этапе передачи сообщения. В дейтаграммных сетях эта служба называется службой аутентификации источника данных, передаваемых в виде дейтаграмм.

В виртуальных сетях используются протоколы информационного обмена типа виртуального соединения. Передача информации между абонентами организуется по виртуальному каналу и происходит в три этапа: создание (установление) канала, собственно передача и уничтожение (разъединение) канала. При этом сообщения разбиваются на одинаковые части (пакеты). Пакеты передаются по виртуальному каналу в порядке их следования в сообщении.

6Существует множество методов обеспечения достоверности пе­редачи информации (методов защиты от ошибок), отличающихся по используемым для их реализации средствам, по затратам времени на их применение на передающем и приемном пунктах, по затратам до­полнительного времени на передачу фиксированного объема данных (оно обусловлено изменением объема трафика пользователя при реа­лизации данного метода), по степени обеспечения достоверности пе­редачи информации. Практическое воплощение методов состоит из двух частей — программной и аппаратной. Соотношение между ними может быть самым различным, вплоть до почти полного отсутствия одной из частей. Чем больше удельный вес аппаратных средств по сравнению с программными, тем при прочих равных условиях сложнее оборудование, реализующее метод, и меньше затрат времени на его реализацию, и наоборот.

Выделяют две основные причины возникновения ошибок при пере­даче информации в сетях:

• сбои в какой-то части оборудования сети или возникновение не­благоприятных объективных событий в сети (например, коллизий при использовании метода случайного доступа в сеть). Как пра­вило, система передачи данных готова к такого рода проявлениям и устраняет их с помощью предусмотренных планом средств;

• помехи, вызванные внешними источниками и атмосферными явле­ниями.

Помехи — это электрические возмущения, возникающие в самой аппаратуре или попадающие в нее извне. Наиболее распро­страненными являются флуктуационные (случайные) помехи. Они представляют собой последовательность импульсов, имеющих слу­чайную амплитуду и следующих друг за другом через различные промежутки времени. Примерами таких помех могут быть атмос­ферные и индустриальные помехи, которые обычно проявляются в виде одиночных импульсов малой длительности и большой ампли­туды. Возможны и сосредоточенные помехи в виде синусоидаль­ных колебаний. К ним относятся сигналы от посторонних радио­станций, излучения генераторов высокой частоты. Встречаются и смешанные помехи. В приемнике помехи могут настолько ослабить информационный сигнал, что он либо вообще не будет обнаружен, либо будет искажен так, что «единица» может перейти в «нуль», и наоборот.

Трудности борьбы с помехами заключаются в беспорядочности, нерегулярности и в структурном сходстве помех с информационны­ми сигналами. Поэтому защита информации от ошибок и вредного влияния помех имеет большое практическое значение и является од­ной из серьезных проблем современной теории и техники связи.

Существует довольно большое количество различных помехоус­тойчивых кодов, отличающихся друг от друга по ряду показателей и прежде всего по своим корректирующим возможностям.

К числу наиболее важных показателей корректирующих кодов относятся:

• значность кода, или длина кодовой комбинации, включающей ин­формационные символы (т) и проверочные, или контрольные, сим­волы (К). Обычно значность кода п есть сумма т+К;

избыточность кода Kизб, выражаемая отношением числа конт­рольных символов в кодовой комбинации к значности кода;

• корректирующая способность кода Ккс, представляющая собой отношение числа кодовых комбинаций L, в которых ошибки были обнаружены и исправлены, к общему числу переданных кодовых комбинаций М в фиксированном объеме информации.

Выбор корректирующего кода для его использования в данной ТКС зависит от требований по достоверности передачи информации. Для правильного выбора кода необходимы статистические данные о за­кономерностях появления ошибок, их характере, численности и рас­пределении во времени. Например, корректирующий код, обнаружи­вающий и исправляющий одиночные ошибки, эффективен лишь при условии, что ошибки статистически независимы, а вероятность их появления не превышает некоторой величины. Он оказывается непри­годным, если ошибки появляются группами. При выборе кода надо стремиться, чтобы он имел меньшую избыточность. Чем больше коэффициент Киз6, тем менее эффективно используется пропускная способ­ность канала связи и больше затрачивается времени на передачу ин­формации, но зато выше помехоустойчивость системы.

В качестве примера рассмотрим порядок кодирования информа­ции (формирования кодовой комбинации для ее передачи адресату) и декодирования (выявления и исправления ошибок в принятой кодовой комбинации и выделения из нее информационных символов, т.е. ин­формации пользователя) при использовании одного из наиболее попу­лярных корректирующих кодов — кода Хэмминга, обнаруживающе­го и исправляющего одиночные ошибки.

В этом коде контрольные символы занимают позиции, соответ­ствующие значениям 2°, 21, 22, 23 и т.д., т.е. позиции с номерами 1, 2, 4, 8 и т.д. (нумерация позиций кодовой комбинации — слева направо). Количество контрольных символов в кодовой комбинации должно быть таким, чтобы в процессе декодирования сформированное кор­ректирующее число (в двоичной системе счисления) могло указать позицию кодовой комбинации с максимальным номером. Например, для пяти информационных разрядов потребуется четыре контрольных. В полученной кодовой комбинации позиция с наибольшим номером будет 9-й, что записывается как 1001, т.е. требует четырех разрядов.

Значения контрольных символов при кодировании определяются путем контроля на четность количества единиц в информационных разрядах кодовой комбинации. Значение контрольного символа рав­но 0, если количество единиц будет четным, и равно 1 при нечетном количестве единиц.

При определении значения 1-го контрольного символа, размещае­мого на 1-й позиции кодовой комбинации, проверяются на четность те информационные позиции, двоичные изображения номеров кото­рых содержат единицу в младшем разряде, т.е. проверяются позиции с нечетными номерами. При определении значения 2-го контрольного символа, размещаемого на 2-й позиции кодовой комбинации, прове­ряются на четность те информационные позиции, двоичные изобра­жения номеров которых содержат единицу во 2-м разряде, т.е. пози­ции с номерами 3, 6, 7, 10, 11 и т.д. Значение 3-го контрольного симво­ла, размещаемого на 4-й позиции кодовой комбинации, определяется путем контроля на четность тех информационных позиций, двоичные изображения номеров которых содержат единицу в 3-м разряде, т.е. позиции с номерами 5, 6, 7, 12 и т.д. Аналогично устанавливаются значения и других контрольных символов.

В процессе декодирования формируется корректирующее число (КЧ), разрядность двоичного изображения которого устанавливается по указанному выше правилу. Значения разрядов этого числа опреде­ляются по правилам, аналогичным тем, которые использовались для определения значений контрольных символов в процессе кодирова­ния. Разница лишь в том, что при определении значений разрядов КЧ проверяются на четность не только информационные позиции, но и контрольные. Например, для определения значения младшего разряда КЧ проверяются на четность те позиции кодовой комбинации, двоич­ные изображения номеров которых содержат единицу в младшем раз­ряде, т.е. позиции с нечетными номерами 1, 3, 5, 7 и т.д.

Значение корректирующего числа определяет номер позиции ко­довой комбинации, в которой произошла ошибка. Для ее исправления необходимо значение кода в этой позиции изменить на противополож­ное (0 на 1 или 1 на 0). Если КЧ равно нулю, то это указывает на отсутствие ошибок в принятой кодовой комбинации. Процесс деко­дирования завершается выделением из кодовой комбинации инфор­мационных символов.

7 24. Методы доступа и протоколы передачи данных.
В различных сетях существуют различные процедуры обмена данными между рабочими станциями. Эти процедуры называют протоколами передачи данных.

Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE) разработал стандарты для протоколов передачи данных в локальных сетях. Это стандарты IEEE802. Для нас представляют практический интерес стандарты IEEE802.3, IEEE802.4 и IEEE802.5, которые описывают методы доступа к сетевым каналам данных.

Наибольшее распространение получили конкретные реализации методов доступа: Ethernet, Arcnet и Token Ring. Эти реализации основаны соответственно на стандартах IEEE802.3, IEEE802.4 и IEEE802.5. Для простоты мы будем использовать названия реализаций методов доступа, а не названия самих стандартов, хотя между стандартами и конкретными реализациями имеются некоторые различия.





Дата публикования: 2015-02-03; Прочитано: 1094 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...