Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Следствия. · Многочлен -ой степени может иметь не более различных корней



· Многочлен -ой степени может иметь не более различных корней.

· Если многочлен степени выше второй имеет ровно различных корней, то его производная имеет ровно корень.

· 1. Теорема Ролля

· Знание производной некоторой функции позволяет судить о характерных особенностях в поведении этой функции. В основе всех таких исследований лежат некоторые простые теоремы, называемые теоремами о среднем в дифференциальном исчислении.

· Начнем рассмотрение таких теорем с теоремы, связываемой с именем французского математика Ролля (1652–1719).

· Теорема 1.1. Если функция непрерывна на отрезке , дифференцируема во всех его внутренних точках, а на концах отрезка , обращается в ноль, то существует, по крайней мере, одна точка , в которой .

· Доказательство. Так как функция непрерывна на отрезке , то, согласно свойству 11.1.1, она должна достигать хотя бы один раз на этом отрезке своего минимума и максимума (рис. 1.1).

· Если , функция постоянна, то есть . Но в этом случае для любого .

· В общем случае , и хотя бы одно из этих чисел не равно нулю. Предположим для определенности, что . Тогда существует точка , в которой .

·

· Рис. 1.1

·

· Так как рассматриваемое значение является максимальным, то для него справедливо, что для и .

· Рассмотрим пределы

· для

· и

· для .

· Так как оба предела равны производной функции в одной и той же точке , то они равны между собой. Значит, из одновременности и следует, что , что и требовалось доказать.

· Следует отметить, что данная теорема справедлива и в том случае, когда на концах отрезка функция не обращается в ноль, но принимает равные значения . Доказательство проводится аналогично.

· Геометрический смысл данной теоремы следующий: если непрерывная кривая пересекает ось в двух точках , или принимает в них равные значения, то, по крайней мере, в одной точке между и касательная к кривой параллельна оси .

· Необходимо отметить, что если не во всех точках у рассматриваемой функции существует производная, то теорема может не выполняться. Это касается, например, функции (рис. 1.2):

·

·

· Рис. 1.2

· Данная функция непрерывна на отрезке и обращается в ноль на его концах, но ни в одной точке внутри отрезка производная не равна нулю.

26. Теорема Лагранжа.
Результаты теоремы Ролля используются при рассмотрении следующей теоремы о среднем, принадлежащей Лагранжу (1736–1813).

Теорема. Если функция непрерывна на отрезке и дифференцируема во всех его внутренних точках, то существует, по крайней мере, одна точка , в которой .

Доказательство. Рассмотрим график функции (рис. 2.1).

Проведем хорду, соединяющую точки и , и запишем ее уравнение. Воспользовавшись уравнением прямой, проходящей через две точки на плоскости, получим:

,

откуда:

Рис. 2.1

и .

Составим теперь вспомогательную функцию, вычтя из уравнения кривой уравнение хорды:

.

Полученная функция непрерывна на отрезке и дифференцируема во всех его внутренних точках. Кроме того, вычисление в точках и показывает, что . Значит, функция на отрезке удовлетворяет требованиям теоремы Ролля. Но в этом случае существует такая точка , в которой .

Вычислим производную функции :

.

Согласно теореме Ролля в точке производная , то есть и

,

что и требовалось доказать.

Геометрический смысл теоремы Лагранжа следующий: внутри отрезка существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при теорема переходит в теорему Ролля.

Теорему Лагранжа часто записывают в следующем виде:

,

то есть приращение функции равно приращению аргумента, умноженному на производную функции в некоторой внутренней точке. В связи с этим теорему Лагранжа называют также теоремой о конечных приращениях.





Дата публикования: 2015-02-03; Прочитано: 234 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...