Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фундаментальные свойства живого. 6 страница



Рецессивный признак проявляется тогда, когда в генотипе имеются оба рецессивных аллеля. Кроме описан­ного варианта, когда родители имеют генотипы Аа и Аа, возможны и другие варианты исходных генотипов. Оба родителя — рецессивные гомозиготы; в этом случае (безусловно, редком) все дети будут больны. Один из родителей болен, а другой — здоров, но имеет в генотипе мутантный ген в гетерози­готном состоянии (аа и Аа). В этом случае наблюдается симуляция доми­нантного наследования (теоретически возможное расщепление 1:1). Однако наиболее часто наблюдаются варианты рождения больного ребенка у фенотипически нормальных родителей и на­личие больных по боковым линиям родословной.

Существует тип наследования, сцеп­ленного с полом. Заболевания, обус­ловленные геном, локализованным в Х-хромосоме, могут быть как доминант­ными, так и рецессивными. При доминантном Х-сцепленном наследовании заболевание одинаково проявляется как у мужчин, так и у женщин и в дальнейшем может передаваться по­томству. В этом случае женщина мо­жет передать этот ген половине до­черей и половине сыновей (ее генотип — ХАХа, вероятность передачи Х-хромосомы с доминантным мутантным геном — 50 %). Мужчина же пере­дает этот ген с Х-хромосомой всем дочерям. Понятно, что сыновья, имею­щие в генотипе только одну материн­скую Х-хромосому, этот ген от отца унаследовать не могут. Примером тако­го заболевания является особая форма рахита, устойчивого к лечению каль­циферолами (вит. D).

Близнецовый метод. Это один из наиболее ранних методов изучения генетики человека, однако он не утра­тил своего значения и в настоящее время. Близнецовый метод был вве­ден Ф. Гальтоном, который выделил среди близнецов две группы: однояйцо­вые (монозиготные) и двуяйцовые (ди-зиготные). Как правило, у человека ро­ждается один ребенок, но в среднем один случай на 84 новорожденных со­ставляют двойни. Около одной трети их числа — монозиготные близнецы. Они развиваются из разъединившихся бластомеров одной оплодотворенной яйцеклетки и, следовательно, имеют одинаковый генотип. Монозиготные близнецы при нормальном эмбрио­нальном развитии всегда одного пола.

Дизиготные близнецы рождаются ча­ще (2/3 общего количества двоен), они развиваются из двух одновремен­но созревших и оплодотворенных яйце­клеток. Такие близнецы могут быть и однополые, и разнополые. Если изучаемый пригнан проявляется у обоих близнецов пары, их называют конкчрдаятными (лат. сопсогйаге — быть согласным, сходным). Конкор­да нтность — это процент сходства по изучаемому признаку. Отсутствие при­знака у одного из близнецов — дискордантность.

В настоящее время для более точно­го определения зиготности кроме мор­фологических признаков используют исследование групп крови (по системе АВО, К,h, MN) и белков плазмы крови.

Близнецовый метод используется в генетике человека для того, чтобы оце­нить степень влияния наследственно­сти и среды на развитие какого-либо нормального или патологического при­знака. Поскольку у монозиготных близнецов одинаковые генотипы, то имеющееся несходство вызывается ус­ловиями среды в период либо внутри­утробного развития, либо формирова­ния организма после рождения.

Для оценки роли наследственности в развитии того или иного признака производят расчет по формуле: Н= (% сходства ОБ - % сходства ДБ) / (100 - % сходства ДБ). Где Н – коэф.нас-ти, ОБ – однояй.близ., ДБ – двуяй.близ.

При Н, равном единице, признак полностью определяется наследствен­ным компонентом; при Н, равном ну­лю, определяющую роль играет влия­ние среды. Коэффициент, близкий к 0,5, свидетельствует о примерно оди­наковом влиянии наследственности и среды на формирование признака.

Метод дерматоглифики. Дер­матоглифика (гр. derma — кожа, gliphe — рисовать) — это изучение релье­фа кожи на пальцах, ладонях и подо­швенных поверхностях стоп. В отличие от других частей тела здесь име­ются эпидермальные выступы — греб­ни, которые образуют сложные узоры. В 1892 г. Ф. Гальтон предложил классификацию этих узоров, позволившую использо­вать этот метод для идентификации личности в криминалистике. Таким образом, выделился один из разде­лов дерматоглифики — дактилоскопия (изучение узоров на подушечках пальцев). Другие разделы дермато­глифики — пальмоскопия (рисунки на ладонях) и плантоскопия (изучение дерматоглифики подошвенной поверх­ности стопы).

Дактилоскопия. Гребни на коже пальцев рук соответствуют со­сочкам дермы (от лат. papilla — со­сочек), поэтому их называют также па­пиллярными линиями, рельеф этих выступов повторяет пласт эпидермиса. Межсосочковые углубления образуют бороздки. На поверхности гребней открываются выводные протоки пото­вых желез, а в толще соединительно­тканного сосочка находятся чувстви­тельные нервные окончания. Поверх­ность, покрытая гребневой кожей, от­личается высокой тактильной чувстви­тельностью.

Дерматоглифические исследования имеют важное значение в определе­нии зиготности близнецов, в диагно­стике некоторых наследственных забо­леваний, в судебной медицине, в кри­миналистике для идентификации лич­ности. Папиллярные линии на паль­цевых подушечках образуют токи раз­личного направления. Узоры обычно изучают на отпечатках, сделанных на бумаге после смазывания кожи типо­графской краской. Детальное исследо­вание узора проводят с помощью лупы. Папиллярные линии разных токов ни­когда не пересекаются, но могут сбли­жаться в определенных пунктах, об­разуя трирадиусы, или дельты. На пальцевых поду­шечках различают линии центрально­го узора и линии рамки, которые окай­мляют центральный узор. Выдел.3 основ.типа: дуги А (англ. аrch — дуга); петли L (англ. 1оор — петля) и завитковые узоры W (англ. wor1— завиток). Ду­говые узоры встречаются реже осталь­ных (6 %), в этом узоре имеется лишь один поток папиллярных линий.

Петлевые узоры являются наиболее распростра­ненными (около 60 %). Это замкнутый с одной стороны узор. Петли имеют одну дельту. Если петля открывается в сторону лучевой кости, она называется радиальной, если в сторону локтевой кости,—ульнарной (Lr; Lu).

Завитковые узоры занимают среднее место по распространенности (34 %). Они имеют вид концентрических кру­гов, овалов, спиралей, снизу и сверху центральная часть узора окаймлена двумя потоками линий. Завитки име­ют две дельты.

Пальмоскопия. Ладонный ре­льеф очень сложный, в нем выделяют ряд полей, подушечек и ладонных ли­ний. Центральную ладонную ямку окружают шесть возвышений — поду­шечек. У основания большого паль­ца — тенар, у противоположного края ладони — гипотенар, против межпальцевых промежутков находят­ся четыре межпальцевые подушечки. У основания II, III, IV и V пальцев находятся пальцевые трирадиусы – точки, где сходятся три разнонаправ­ленных тока папиллярных линий.

У правшей более сложные узоры встречаются на правой руке, у лев­шей — на левой, У женщин частота завитковых узоров ниже, чем у муж­чин, меньше гребневой счет, а частота петлевых и дуговых — выше. На подошвенной поверхности стоп также имеются кожные узоры. Их изучение составляет предмет плантоскопии.

Биохимические методы. Эти ме­тоды используются для диагностики болезней обмена веществ, причиной которых является изменение активно­сти определенных ферментов. С помо­щью биохимических методов открыто около 500 молекулярных болезней, являющихся следствием проявления мутантных генов. При различных ти­пах заболеваний удается либо опре­делить сам аномальный белок-фермент, либо промежуточные продукты обмена.

Применяют также микробиологиче­ские тесты, они основаны на том, что некоторые штаммы бактерий могут расти только на средах, содержащих определенные аминокислоты, углево­ды. Удалось получить штаммы по веществам, являющимся субстратами

или промежуточными метаболитами у больных при нарушении обмена. Если в крови или моче есть требуемое для роста вещество, то в чашке Петри во­круг фильтровальной бумаги, пропи­танной одной из этих жидкостей, на­блюдается активное размножение мик­робов, чего не бывает в случае анализа у здорового человека. Разрабатыва­ются различные варианты микробиоло­гических методов.

Популяционно-статистиче­ский метод позволяет изучать рас­пространение отдельных генов в челове­ческих популяциях. Одним из наиболее простых и уни­версальных математических методов яв­ляется метод, предложенный Г. Харди и В. Вайнбергом (см. гл. 11). Имеется и ряд других специальных математи­ческих методов. В результате становит­ся возможным определить частоту генов в различных группах населения, ча­стоту гетерозиготных носителей ряда наследственных аномалий и болезней.

Исследуемые популяции могут раз­личаться по биологическим призна­кам, географическим условиям жизни, экономическому состоянию. Изучение распространенности генов на опре­деленных территориях показывает, что в этом отношении их можно разделить на две категории: 1) имеющие универ­сальное распространение (к их числу относится большинство известных ге­нов); примером могут служить рецес­сивные гены фенилкетоиурии; 2) встречающиеся локально, преимущественно в определенных ра­йонах (ген серповидноклеточной анемии).

Популяционно-статистический метод позволяет определить генетиче­скую структуру популяций (соотноше­ние между частотой гомозигот и гетерозигот). Новые возможности для про­ведения генетического анализа откры­вает применение электронно-вычисли­тельной техники. Знание генетического состава популяций населения имеет большое значение для социальной ги­гиены и профилактической медицины.

Цитогенетическпй метод. Принципы цитогенетических исследова­ний сформировались в течение 20—30-х годов на классическом объекте генети­ки — дрозофиле и на некоторых расте ниях. Метод основан на микроскопиче­ском исследовании хромосом.

Нормальный кариотнп человека включает 46 хромосом, из них 22 пары аутосом и 2 половые хромосомы. Это удалось шведским ученым Д. Тийо и А. Левану. К этому времени в лабора­тории успешно

производили культиви­рование клеток человека (клетки кост­ного мозга, культуры фибробластов или лейкоцитов периферической кро­ви, стимулированных к делению фитогемагглютинином). Важнейшая задача со­стоит в умении различать индивидуаль­ные хромосомы в данной метафазной пластинке. Непосредственно, путем ви­зуального наблюдения под микроско­пом это сделать трудно, поэтому обыч­но делают микрофотографии, а затем вырезают отдельные хромосомы и рас­полагают их в порядке убывающей величины (построение кариограммы).

Для идентификации хромосом при­меняют количественный морфометриче-ский анализ. С этой целью проводят измерение длины хромосомы в микро­метрах. Определяют также соотноше­ние длины короткого плеча к длине всей хромосомы (центромерный ин­декс).

В настоящее время разработано не­сколько методов выявления структур­ной неоднородности по длине хромосом человека. Основу всех методов состав­ляют произведенные на препаратах процессы денатурации и ренатурации ДНК хромосом. Если после денатура­ции ДНК, вызванной нагреванием и некоторыми другими факторами, про­вести затем ее ренатурацию— восста­новление исходной двунитчатой струк­туры, а затем окрасить хромосомы кра­сителем Гимзы, то в них выявляется четкая дифференцировка на темноокра-шенные и светлые полосы — диски. Последовательность расположения этих дисков, их рисунок строго спе­цифичен для каждой хромосомы. В ре­зультате различных вариантов метода удается выявить центромерный и око­лоцентромер ный гетерохроматин (С- диски), диски, расположенные по дли­не хромосом (собственно Гимзы-диски, G-диски).

Если нарушения касаются половых хромосом, то диагностика упрощается. В этом случае проводится не полное кариотипирование, а применяется ме­тод исследования полового хроматина в соматических клетках.

Половой хроматин — это небольшое дисковидное тельце, интенсивно окра­шивающееся гематоксилином и други­ми основными красителями. Оно обна­руживается в интерфазных клеточных ядрах млекопитающих и человека, не­посредственно под ядерной мембраной.

Впоследствии было уточнено, что половой хроматин имеется в большинстве клеточных ядер самок (60—70 %), у самцов его обычно нет, либо встреча­ется очень редко (3—5 %).

Половой хроматин можно определить и на мазках крови, в ядрах нейтрофилоцитов эти тельца имеют харак­терный вид барабанных палочек, от­ходящих от сложно-дольчатого ядра этих лейкоцитов. В норме у женщин эти структуры обнаруживаются в 3— 7 % нейтрофилоцнтов, а у мужчин они вообще отсутствуют.

Методы гибридизации сома­тических клеток. Соматические клетки содержат весь объем генетиче­ской информации. Это дает возможность изучать многие вопросы генетики чело-

века, которые невозможно исследовать на целом организме. Благодаря мето­дам генетики соматических клеток че­ловек стал как бы одним из эксперимен­тальных объектов. Соматические клет­ки человека получают из разных орга­нов (кожа, костный мозг, клетки кро­ви, ткани эмбрионов). Чаще всего ис­пользуют клетки соединительной тка­ни (фибробласты) и лимфоциты крови. Культивирование клеток вне

организ­ма позволяет получить достаточное ко­личество материала для исследования, что не всегда можно взять у человека без ущерба для здоровья.

В 1960 г. французский биолог Ж. Барский, выращивая вне организма в культуре ткани клетки двух линий мышей, обнаружил, что некоторые клет­ки по своим морфологическим и биохи­мическим признакам были промежуточ­ными между исходными родительскими клетками. Эти клетки оказались гибридными.

Гибридизация соматических клеток проводится в широких пределах не только между разными видами, но и типами: человек х мышь, человек х комар, мышь х курица и т. п. В за­висимости от целей анализа исследова­ние проводят на гетерокарионах или синкарионах. Синкарионы обычно уда­ется получить при гибридизации в пре­делах класса. Это истинные гибридные клетки, так как в них произошло объединение двух геномов. Происходит постепенная элиминация хромосом того организма, клетки ко­торого имеют более медленный темп размножения.

Применение метода генетики сома­тических клеток дает возможность изу­чать механизмы первичного действия генов и взаимодействия генов.

Методы моделирования. Теоре­тическую основу биологического моде­лирования в генетике дает закон гомо­логических рядов наследственной из­менчивости, открытый Н. И. Вавило­вым, согласно которому генетически близкие виды и роды характеризуются сходными рядами наследственной из­менчивости. Исходя из этого закона, можно предвидеть, что в пределах класса млекопитающих (и даже за его пределами) можно обнаружить мно­гие мутации, вызывающие такие же изменения фенотипических призна­ков, как и у человека. Для моделирова­ния определенных наследственных ано­малий человека подбирают и изучают мутантные линии животных, имеющих сходные нарушения.

Многие мутантные линии животных путем возвратного скрещивания пере­ведены в генетически близкие, в ре­зультате получены линии, различаю­щиеся только по аллелям одного ло-куса. Это дает возможность уточнить механизм развития данной аномалии. Безусловно, у человека могут быть свойственные только ему заболевания и в результате взаимодействия генов у человека фенотипический эффект мо­жет значительно изменяться. Мутантные линии животных не являются точ­ным воспроизведением наследственных болезней человека.

(14) Моногибридное скрещивание. Пра­вило единообразия гибридов первого поколения. В опытах Мен­деля при скрещивании сортов гороха, имеющих желтые и зеленые семена, все потомство (т. е. гибриды первого поколения) оказалось с желтыми се­менами.

Обнаруженная закономерность по -лучила название правила единообразия гибридов первого поколения. Признак, проявляющийся в первом поколении, получил название доминантного (лат. ёогшпапз — господствовать), не про­являющийся, подавленный — рецессив­ного (лат. recessus — отступление).

Опыты показали, что рецессивный аллель проявляется только в гомозиготном состоянии, а доминант­ный — как в гомозиготном, так и в ге­терозиготном.

Гены расположены в хромосомах. Следовательно, в результате мейоза гомологичные хромосомы (а с ними аллельные гены) расходятся в различ­ные гаметы. Но так как у гомозиготы оба аллеля одинаковы, все гаметы не­сут один и тот же ген. Таким образом, гомозиготная особь дает один тип га­мет.

Следовательно, первый закон Мен­деля, или закон единообразия гибри­дов первого поколения, в общем виде можно сформулировать так: при скре­щивании гомозиготных особей, отли­чающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по гено­типу.

Правило расщепления. При скре­щивании однородных гибридов пер­вого поколения между собой (самоопы­ление или родственное скрещивание) во втором поколении появляются осо­би как с доминантными, так и с рецес­сивными признаками, т. е. наблюдается расщепление.

Обобщая фактический материал, Мендель пришел к выводу, что во втором поколении происходит расщеп­ление признаков в определенных частотных соотношениях, а именно: 75 % особей имеют доминантные при­знаки, а 25 % — рецессивные. Эта закономерность получила название второго правила Менделя, или пра­вила расщепления.

Согласно второму правилу Менделя, используя современные термины, мож­но сделать вывод, что: 1) аллельные гены, находясь в гетерозиготном со­стоянии, не изменяют друг друга; "} при созревании гамет у гибридов образу­ется приблизительно равное число гамет с доминантными и рецессивными аллелями; 3) при оплодотворении муж­ские и женские гаметы, несущие доми­нантные и рецессивные аллели, сво­бодно комбинируются.

При скрещивании двух гетерозигот (Аа), у каждой из которых образует­ся два типа гамет — половина с доми-нантным аллелем (А), половина с ре­цессивным аллелем (а), следует ожи­дать четыре возможных сочетания.

Таким образом, второе правило Мен­деля формулируется так: при скрещивании двух гетерозиготных особей, т. е. гибридов, анализируемых по одной аль­тернативной паре признаков, в по­томстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу 1:2:1.

Гипотеза «чистоты гамет», Правило расщепления показывает, что хотя у гетерозйгот проявляются лишь доминантные признаки, однако рецессивный ген не утрачен, более того, он не изменился.

Следовательно, аллельные гены, находясь в гетерози­готном состоянии, не сливаются, не разбавляются, не изменяют друг дру­га. Эту закономерность Мендель на­звал гипотезой «чистоты гамет». В даль­нейшем эта гипотеза получила цито­логическое обоснование. Вспомним, что в соматических клетках диплоид­ный набор хромосом. В одинаковых местах (локусах) гомологичных хромо­сом находятся аллельные гены. Если это гетерозиготная особь, то в одной из гомологичных хромосом расположен доминантный аллель, в другой.— ре­цессивный. При образовании половых клеток происходит мейоз и в каждую из гамет попадает лишь одна из гомо­логичных хромосом. В гамете может быть лишь один из аллельных генов. Гаметы остаются «чистыми», они несут только какой-то один из аллелей, опре­деляющий развитие одного из альтер­нативных признаков.

Доминантные и рецессивные признаки в наследственности человека. В генетике человека извест­но много как доминантных, так и рецес­сивных признаков. Одни из них имеют нейтральный характер и обеспечивают полиморфизм в челове­ческих популяциях, другие приводят к различным патологическим состоя­ниям. Но при этом следует иметь в виду, что доминантные патологические признаки как у человека, так и у дру­гих организмов, если они заметно сни­жают жизнеспособность, сразу же бу­дут отметены отбором, так как носи­тели их не смогут оставить потом­ства.

Наоборот, рецессивные гены, даже заметно снижающие жизнеспособ­ность, могут в гетерозиготном состоя­нии длительно сохраняться, переда­ваясь из поколения в поколение, и проявляются лишь у гомозигот.

Анализирующее скрещивание. Генотип организма, имеющего рецес­сивный признак, определяется по его фенотипу. Такой организм обязатель­но должен быть гомозиготным по рецессивному гену, так как в случае гетерозиготности у него был бы доми­нантный признак. Проявляющие до­минантные признаки гомозиготная и гетерозиготная особи по фенотипу не­отличимы. Для определения генотипа в опытах на растениях и животных про­изводят анализирующие скрещивания и узнают генотип интересующей особи по потомству. Анализирующее скре­щивание заключается в том, что особь, генотип которой неясен, но должен быть выяснен, скрещивается с ре­цессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна.

Неполное доминирование. В своих опытах Мендель имел дело с при­мерами полного доминирования, поэто­му гетерозиготные особи в его опытах оказались неотличимы от доминантных гомозигот. Но в природе наряду с полным доминированием часто на­блюдается неполное, т. е. гетерозиго-ты имеют иной фенотип.

Свойством неполного доминирова­ния обладает ряд генов, вызывающих наследственные аномалии и болезни человека. Например, так наследуются серповидноклеточная анемия (о ней подробнее будет сказано ниже), атак­сия Фридрейха, характеризуемая про­грессирующей потерей координации произвольных движений. По типу неполного доминирования наследует­ся цистинурия. У гомозиготно рецес­сивным аллелям этого гена в почках образуются цистиновые камни, а у гетерозйгот обнаруживается лишь по­вышенное содержание цистина в моче. У гомозигот по гену пильгеровой ане­мии отсутствует сегментация в ядрах лейкоцитов, а у гетерозйгот сегмента­ция есть, но она все же необычная.

Отклонения от ожидаемого расщепления, связанные с ле­тальными генами. В ряде случаев расщепление во втором поколении может отличаться от ожидаемого в связи с тем, что гомозиготы по не­которым генам оказываются нежизне­способными.

Подобный тип наследования харак­терен, например, для серых каракуль­ских овец, у которых при скрещивании между собой наблюдается расщепление в соотношении 2:1. Оказалось, что ягнята, гомозиготные по доминант­ному аллелю серой окраски, гибнут из-за недоразвития пищеварительной системы. У человека аналогично насле­дуется доминантный ген брахидактилии (укороченные пальцы). Признак проявляется в гетерозиготном состоя­нии, а у гомозигот этот ген приводит к гибели зародышей на ранних ста­диях развития.

Полигибридное скрещивание. Дигпбридное скрещивание как при­мер полигибридного скрещива­ния. При полигибридном скрещива­нии родительские организмы анализи­руются по нескольким признакам. Примером полигибридного скрещива­ния может служить дигибридное, при котором у родительских организмов принимаются во внимание отличия по двум парам признаков. Первое поколе­ние гибридов в этом случае оказывает­ся однородным, проявляются только доминантные признаки, причем доминирование не зависит от того, как при­знаки были распределены между ро­дителями.

Правило независимого комби­нирования признаков. Изучая рас­щепление при дигибридном скрещива­нии, Мендель обнаружил, что призна­ки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбиниро­вания признаков, формулируется сле­дующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтерна­тивных признаков, во втором поколе­нии F2) наблюдается независимое на­следование и комбинирование призна­ков, если гены, определяющие их, рас­положены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям.

В более общей форме, при любых скрещиваниях, расщепление по фено­типу происходит по формуле (3 + 1)n, где п — число пар признаков, приня­тых во внимание при скрещивании.

Взаимодействие генов: 1) одной аллельной пары (неполное доминир., полное дом., сверхдом., кодом.); 2) разных ал.пар (комплемент.действие, эпистаз, полимерия).

Доминирование проявля­ется в тех случаях, когда один аллель гена полностью скрывает присутствие другого аллеля. Однако, по-видимому, чаще всего присутствие рецессивного аллеля как-то сказывается, и обычно приходится встречаться с различной степенью неполного доминирования. Это объясняется тем, что доминантный аллель отвечает за активную форму белка-фермента, а рецессивные аллели часто детерминируют те же белки-ферменты, но со сниженной фермента­тивной активностью. Это явление иреализуется у гетерозиготных форм в виде неполного доминирования.

Сверхдоминирование за­ключается в том, что у доминантного аллеля в гетерозиготном состоянии иногда отмечается более сильное про­явление, чем в гомозиготном состоя­нии.

Кодоминирование — про­явление в гетерозиготном состоянии признаков, детерминируемых обоими аллелями. Например, каждый из ал-лельных генов кодирует определенный белок, и у гетерозиготного организма синтезируются они оба. В таких слу­чаях путем биохимического исследова­ния можно установить гетерозигот-ность без проведения анализирующего скрещивания. Этот метод нашел рас­пространение в медико-генетических консультациях для выявления гетеро­зиготных носителей генов, обусловли­вающих болезни обмена. По типу кодо-минирования у человека наследуется четвертая группа крови.

Сложные отношения возникают меж­ду неаллельными парами генов.

Комплементарное дей­ствие. Комплементарными (лат. complementum — средство пополнения) называются взаимодополняющие гены, когда для формирования признака необходимо наличие нескольких не-аллельных (обычно доминантных) ге­нов. Этот тип наследования в природе широко распространен.

У душистогр горошка окраска вен­чика цветка обусловлена нал чем двух доминантных генов и B ), в отсутствие одного ' из них — цветки белые. Поэтому при скрещивании рас­тений с генотипами ААЬЪ и ааВВ, имеющих белые венчики, в первом поколении растения оказываются ок­рашенными, а во втором поколении расщепление происходит в соотноше­нии 9 окрашенных к 7 неокрашенным (ЗАbb + ЗааВ + 1 ааbb).

Комплементарное взаимодействие ге­нов у человека можно показать на следующих примерах. Нормальный слух' обусловлен двумя доминантными неаллельными генами D и Е, из кото­рых один определяет развитие улитки, а другой—слухового нерва. Доминант­ные гомозиготы и гетерозиготы по обоим генам имеют нормальный слух, рецессивные гомозиготы по одному из этих генов — глухие.

Эпистаз. Взаимодействие генов, противоположное комплементарному, получило название эпистаза. Под эпистазом понимают подавление неаллельным геном действия другого гена, названного гипостатическим.

Проявление эпистаза у человека можно показать на следующем при­мере. Ген, обусловливающий группы крови по системе Л 60, кодирует не только синтез специфических белков, присущих данной группе крови, но и наличие их в слюне и других секре­тах. Однако при наличии в гомозигот­ном состоянии рецессивного гена по другой системе крови — системе Люис выделение их в слюне и других секре­тах подавлено. Другим примером эпи­стаза у человека может служить «бомбейский феномен» в наследовании групп крови. Он описан у женщины, получившей от матери аллель 1В, но фенотипическн имеющей первую группу крови. Оказалось, что деятель­ность аллеля 1В подавлена редким рецессивным аллелем гена «х», ко­торый в гомозиготном состоянии оказы­вает эпистатическое действие.

В проявлении ферментопатий (т. е. болезней, связанных с отсутствием каких-либо ферментов) нередко по­винно эпистатическое взаимодействие генов, когда наличие или отсутствие продуктов реализации какого-либо гена препятствует образованию жиз­ненно важных ферментов, кодируемых другим геном.

Полимерия. Различные- доми­нантные неаллельные гены могут ока­зывать действие на один и тот же при­знак, усиливая его проявление. Та­кие гены получили название однознач­ных, или полимерных, а признаки, ими определяемые,— полигенных. В этом случае два или больше доминант­ных аллелей в одинаковой степени оказывают влияние на развитие одного и того же признака.

Важная особенность полимерии — суммирование (аддитивность) действия неаллельных генов на развитие коли­чественных признаков. Если при моно-генном наследовании признака воз­можно три варианта «дозл гена в гено­типе: АА, Аа, аа. то при полигенном количество их возрастает до четырех и более. Суммирование «доз» полимер­ных генов обеспечивает cуществование непрерывных рядов количественных изменений.

Биологическое значение полимерии заключается еще и в том, что оп­ределяемые этими генами признаки более стабильны, чем кодируемые одним геном. Организм без полимер­ных генов был бы крайне неустой­чив: любая мутация или рекомбинация приводила бы к резкой изменчиво­сти, а это в большинстве случаев не­выгодно.

(15) Независимое комбинирование неаллельных генов. Изучая рас­щепление при дигибридном скрещива­нии, Мендель обнаружил, что призна­ки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбиниро­вания признаков, формулируется сле­дующим образом: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтерна­тивных признаков, во втором поколе­нии F2) наблюдается независимое на­следование и комбинирование призна­ков, если гены, определяющие их, рас­положены в различных гомологичных хромосомах. Это возможно, так как при мейозе распределение (комбини­рование) хромосом в половых клетках при их созревании идет независимо, что может привести к появлению по­томков, несущих признаки в сочета­ниях, не свойственных родительским и прародительским особям. Вступают в брак дигетерозиготы по окраске глаз и способности лучше владеть правой рукой (АаВb). При формировании гамет аллель А может оказаться в одной гамете как с аллелем В, так и с аллелем b. Точно так же аллель а может попасть в одну гамету либо с аллелем В, либо с аллелем b. Следовательно, у дигетерозиготной особи образуются четыре возможные комбинации генов в гаметах: АВ, Аb, аВ, аb. Всех типов гамет будет поров­ну (по 25%).





Дата публикования: 2015-02-03; Прочитано: 177 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...