Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Осадконакопление в озёрах



Отложения озёр представлены терригенными, хемогенными и органогенными осадками. Состав накапливающихся в озёрах осадков в первую очередь определяется климатической зональностью.

В озёрах гумидных областей накапливаются преимущественно алевро-глинистые отложения, часто с большим количеством органики. Отмершие организмы, а также материал, сносимый в озеро, откладываются на дне и образуют гиттию (от швед. gyttja - ил, тина) – озёрные отложения, состоящие из органических остатков. Органическое вещество гиттий образуется преимущественно за счёт продуктов распада живущих в воде растительных и животных организмов, в меньшей степени за счёт принесённых с окружающей суши остатков наземных растений. Минеральная часть состоит из песчано-глинистого материала и осаждённых из вод окислов кальция, железа и магния. Гиттию называют также сапропель (от греч. sapros - гнилой и pelos - ил, грязь - "гнилостный ил"). В озере Неро, расположенном у города Ростов-Ярославский (Ростов Великий), слой сапропеля достигает 20 м. Сапропели используются в качестве удобрения или в качестве минеральной подкормки для скота; иногда в бальнеологических целях (грязелечение).

В полупустынных и пустынных аридных зонах озёра бессточные с интенсивным испарением. Поскольку реки и подземные воды всегда приносят соли, а испаряется только чистая вода, то происходит постепенное повышение солёности озёрных вод. Концентрация солей может повышаться настолько значительно, что из пересыщенной солями воды (рапы) происходит осаждение соли на дно озера (самосадочные озёра). При осолонении континентальных озёр накапливаются карбонатные, содовые, сульфатные, соляные и другие хемогенные отложения. В России современные содовые озёра известны в Забайкалье и в Западной Сибири; за рубежом большой известностью пользуется озеро Натрон в Танзании и озеро Серлс в Калифорнии. К ископаемым отложениям подобных озёр приурочены месторождения природной соды.
В целом, для аридных областей характерны галогенно-карбонатные отложения, бедные органикой.

В ряде случаев решающую роль в характере осадконакопления имеет происхождение озёрных котловин. Для ледниковых озёр характерны ленточные глины, формирующиеся за счёт сочетания озёрных и ледниковых отложений. В карстовых озёрах накапливаются карбонаты, иногда нагромождения глыб обвального происхождения.

Эволюция озёр

Озёра в масштабах геологического времени существуют относительно недолго. Исключение составляют лишь некоторые озёра с котловинами тектонического происхождения, приуроченные к активным зонам земной коры, и крупные остаточные озёра. Со временем котловины заполняются осадками или заболачиваются.

Геологическая деятельность подземных вод

Геологическая работа подземных вод ярче всего проявляется в процессах карста, суффозии и образования оползней.

Карст это совокупность геологических процессов, обусловленных растворением и размывом горных пород движущимися водами, и ведущих к образованию отрицательных форм рельефа на поверхности Земли и различных пустот на глубине. Среди водорастворимых горных пород можно назвать каменную и калийную соли, гипс, карбонатные породы. Хотя легче всего растворяются соли и гипс, но карстовые формы чаще всего связаны с гораздо шире распространенными карбонатными породами. Карстовые формы подразделяются на поверхностные (открытые) и подземные (закрытые). Вначале развивается поверхностный карст, мельчайшие формы которого называются карры – это борозды, рытвины и разной формы углубления, возникшие на обнажающейся поверхности растворимых горных пород. Карры образуются под действием атмосферных осадков. Поскольку карбонатные породы в большей или меньшей степени трещиноваты, разрастание карров сопровождается размывом и расширением трещин. Так образуются поноры – наклонные или вертикальные колодцы, по которым поверхностные воды уходят под землю. Дальнейшее развитие этих процессов ведет к возникновению карстовых воронок – обширных углублений, диаметром до 100 метров и больше, и глубиной до 20 метров. Если воронка образовалась благодаря слиянию карров и расширению верхней части понор, то склоны воронки будут пологими. При образовании карстовой воронки в результате обрушения свода подземной карстовой пустоты, склоны могут достигать значительной крутизны. Разрастание карстовых воронок или обрушение кровли крупной карстовой полости ведет к формированию карстовых котловин и польев, имеющих вид замкнутых понижений с плоским дном и крутыми склонами, высотой до нескольких сот метров. Расширение и углубление понор и трещин влечет образование карстовых колодцев, шахт и пропастей – наклонных или вертикальных форм, глубиной до километра и более. В результате поверхностного карста русло реки может нырнуть в понор или трещину – возникают слепые долины рек. Развитие подземного карста начинается, когда формы открытого карста позволят поверхностным водам проникать под землю, растворяя породы, перекрытые слоями нерастворимых отложений. Крупнейшими из подземных форм являются карстовые пещеры, возникающие как в горах, так и на равнинах. Пещеры представляют собой системы соединяющихся друг с другом наклонных и горизонтальных туннелей, часто располагающихся на нескольких вертикальных уровнях. В лабиринтах переходов из-за растворения, размыва пород или обрушения кровли образуются гигантские по площади и высоте залы (гроты).

Аккумулятивная работа подземных вод в карстовых районах проявляется, в первую очередь, в образовании всевозможных натечных форм. Выпавшие на поверхность атмосферные осадки содержат много растворенного углекислого газа, поэтому, просачиваясь по трещинам, легко растворяют известняки и насыщаются бикарбонатом. После выхода воды на стенки или потолок пещеры, часть углекислоты испаряется, и бикарбонат переходит в карбонат кальция. Последний частично выпадает в осадок, давая начало образованию сталактитов, занавесей, фестонов и других форм, свисающих со свода пещеры. Остатки карбоната кальция выделяются из упавшей капли воды на полу пещеры. Тогда снизу вверх идет рост сталагмитов. Если сталактит срастается со сталагмитом, то возникает сталагнат, или колонна. Кроме того, на дне пещер или в местах выхода на поверхность источников, берущих начало в карстующихся породах, накапливаются пористые, губчатые известковые туфы (травертины). В областях древнего карста на дне воронок и пещер накапливаются нерастворимые глинистые остатки карбонатов, обогащенные красноцветными гидроокислами железа и алюминия. Такие плодородные образования называют «терра-росса» (красная земля). На дне пещер встречаются отложения пещерных рек и озер, а также обвально-осыпные отложения. В холодном климате возможно образование ледяных натечных форм в пещерах. С деятельностью гипертермальных подземных вод связано накопление кремнистых туфов (гейзеритов), месторождений некоторых цветных металлов.


Происхождение и классификация подземных вод

Подземные воды по происхождению могут быть экзогенными (их источник – водные объекты на поверхности суши и влага атмосферы), так и эндогенными (их источник – недра земли).

Экзогенные подземные воды попадают в горные породы либо при процессах просачивания (инфильтрации) поверхностных вод и конденсации водяного пара, либо в результате седиментации (осадконакопления). Эти воды часто называют соответственно инфильтрационными, конденсационными и сендиментационными.

Инфильтрационные подземные воду проникают в горные породы путем просачивания атмосферных, речных, морских и озерных вод. Основную роль при этом играет проникновение в грунт через поры и трещины практически пресной атмосферной воды. Конденсационные подземные воды образуются при конденсации в порах грунта водяного пара, перемещающегося в грунте под влиянием разности давления. Седиментационные подземные воды образуются из вод того водного объекта, где происходил процесс седиментации, т.е. отложения наносов.

Эндогенные подземные воды образуются в горных породах в результате дегидратации минералов или поступают из магматических очагов, в частности в районах современного вулканизма.

По характеру вмещающих воду грунтов подземные воды подразделяют на поровые, залегающие в рыхлых пористых грунтах; пластовые, залегающие в пластах осадочных горных пород; трещинные, залегающие в плотных, но трещиноватых осадочных, магматических и метаморфических горных породах; трещинно-жильные, залегающие в отдельных тектонических трещинах.

По гидравлическим условиям подземные воды подразделяют на напорные (артезианские и глубинные) и безнапорные (грунтовые).

По температуре подземные воды делятся на исключительно холодные (ниже 0), весьма холодные (4-20), теплые (20-37), горячие (37-42), весьма горячие (42-100), исключительно горячие (более 100).

По минерализации подземные воды делят на пресные (до 1%), солоноватые (1-25%), соленые (25-50%), рассолы (более 50%).

По характеру залегания делятся на: подземные воды суши и подземные воды под океанами и морями. Подземные воды суши можно подразделить на подземные воды зоны аэрации и зоны насыщения.

Основные виды подземных вод и их характеристика

1 воды зоны аэрации, почвенные воды, верховодка, капиллярная зона. Зона аэрации занимает верхний слой почвенно-грунтовой толщи: от земной поверхности до уровня грунтовых вод.. Через зону аэрации осуществляется взаимосвязь атмосферы и грунтовых вод. В этой зоне происходят: инфильтрация дождевых и талых вод, формирование почвенной воды и верховодки, фильтрация гравитационной воды и дедукция влаги растительностью с последующей ее транспирацией. Попадая после дождей и таяния снега в грунт, воды расходуется прежде всего на смачивание почвенного слоя и формирование почвенных вод, под которыми понимают временное скопление свободной и капиллярной воды в почвенной толще. Верховодка – временные, сезонные скопления подземных вод. Выше уровня грунтовых вод в пределах зоны аэрации располагается капиллярная воды. Воды этой зоны участвуют в питании почвенных вод и поглощаются корневой системой растений.

2 воды зоны насыщения, грунтовые воды. Грунтовые воды – это подземные воды первого от поверхности постоянно существующего водоносного горизонта, залегающего на первом выдержанном по площади водоупорном плате. Питание грунтовых вод осуществляется путем инфильтрации через зону аэрации атмосферных осадков, конденсации водяного пара и поглощения вод из водотоков и водоемов. Разгрузка грунтовых вод осуществляется в виде источников, фильтрацией в русло водотока или ложе водоема, путем испарения и перетекания в нижележащие водоносные горизонты. Грунтовые воды распространены почти повсеместно, тяготеют к рыхлым четвертичным отложениям, участвуют в питании рек, легко доступны для практического использования.

3 артезианские и глубинные воды. Артезианские воды – это напорные подземные воды, залегающие в водоносных горизонтах между водоупорными пластами. Артезианские воды залегают глубже горизонта грунтовых вод и имеет более стабильный режим. Глубинные воды – это расположенные на больших глубинах напорные подземные воды, испытывающие воздействие геостатического давления и эндогенных сил. Глубинные воды обнаружены в глубоких зонах тектонических нарушений и в глубоких частях осадочных толщ в а артезианских бассейнах.

4 другие типы подземных вод. Воды надмерзлотных таликов – аналоги обычных грунтовых вод, Эти воды представлены подрусловыми, подозерными и склоновыми таликами. Межмерзлотные безнапорные воды сходны с обычными грунтовыми водами.


Работа постоянных водных потоков

Процессы работы рек, возникающие при этом отложения и формы рельефа называются аллювиальными.

Эрозионная деятельность наиболее активно проявляется на первых этапах развития речных долин, а также в верхней части русла. Выделяют два главных вида движения воды: ламинарное и турбулентное. Ламинарное (параллельно-струйное, без перемешивания) движение наблюдается лишь при очень низких скоростях течения в выровненном русле, в реках встречается редко, эрозионная роль его минимальна. Турбулентное (неупорядоченное, перемешивающее) движение, взмучивающее осадки и удерживающее их во взвешенном состоянии, является главенствующим эрозионным фактором. Существует два типа речной эрозии: донная и боковая.

Донная эрозия, ведущая к углублению речной долины, преобладает в начале развития речной долины и всегда сочетается с пятящейся эрозией. Объясняется это тем, что, при одинаковом уклоне русла в низовьях и верховьях, в силу большей массы воды близ устья здесь и эрозия будет максимальна. В результате вертикальных движений земной коры и разной прочности размываемых пород в русле могут возникать пороги и водопады, которые получают роль местных (локальных) базисов эрозии. Вследствие донной эрозии возникает V-образный поперечный профиль речной долины.

Боковая эрозия, заключающаяся в размыве берегов, наибольшее развитие получает в поздние этапы жизни речной долины, когда с приближением к профилю равновесия уменьшится скорость течения в нижней и средней частях русла. Основными причинами ее возникнове­ния являются турбулентность течения и ускорение Кориолиса. Благодаря боковой эрозии русло изгибается, появляются излучины (меандры). Вогнутые берега излучин активно размываются, дно под ними углубляется Под действием боковой эрозии речная долина расширяется, ее поперечный профиль приобретает U-образную или корытообразную форму.

Транспортирующая работа рек по переносу горных пород осуществляется тремя способами. Во-первых, волочением или скольже­нием обломков по дну. Во-вторых, переносом во взвешенном состоянии. В-третьих, перемещением в растворенном виде. В результате соударения пе­реносимых обломков друг с другом, а также с породами стенок и дна русла, происходит их абразионное истирание и уменьшение в размерах. Очевидно, что способ транспортировки зависит от живой силы реки и от состава размываемых пород

Аккумулятивная работа играет все большую роль по мере приближения реки к профилю равновесия, что объясняется снижением скорости потока. Накопление аллювия происходит в устье, русле и, во время половодий, на пойме. Поскольку выработка профиля равновесия начинается в нижней части русла, то здесь же начинается и аккумуляция, постепенно продвигающаяся все выше по течению. Под воздействием абразионного истирания переносимые и отлагаемые обломки подвергаются избирательной сортировке – от верховий реки к устью их размер последовательно уменьшается. По той же причине крупные обломки приобретают окатанную форму. Для минерального состава аллювия характерно абсолютное господство устойчивых к истиранию и растворяющему действию воды зерен, среди которых пальма первенства принадлежит кварцу. Необходимо различать четыре главных фации аллювия равнинных рек: устьевую, русловую, пойменную. Особенностью аллювия горных рек является абсолютное господство грубообломочных (валуны, гальки) отложений русловой фации при почти полном отсутствии осадков пойменной фации.

Типы ледников (покровные и горные)

По внешнему облику и характеру движения ледники делятся на два основных типа – материковые (покровные) и горные. Первые занимают около 98% площади современного оледенения, вторые – около 1,5%.

Покровные ледники – это прежде всего огромные ледниковые щиты Антарктиды (площадь 13,979 млн. км2, средняя мощность ледникового покрова 1720 м, максимальная – 4300 м) и Гренландии (соответственно 1,8 млн. км2, 2300 м, 3400 м).

Покровное оледенение Антарктиды, по современным данным, начало оформляться 25 млн. лет назад, а 7 млн. лет назад площадь ледника была максимальной, в 1,8 раза больше современной. Примерно 10 млн. лет назад уже существовал и Гренландский ледниковый покров. У покровных ледников плоско-выпуклая форма, не зависящая от подледного рельефа. Накопление снега происходит в центре, за счет снега и сублимации водяного пара на поверхности ледника, расходование – на окраинах. Движение (течение) льда «радиальное» – от центральной части к периферии, независимо от подледного ложа, где происходит главным образом механическая разгрузка путем обламывания концов ледников, находящихся на плаву. На поверхности ледников расход льда происходит путем абляции.

Установлено, что Гренландский ледник проморожен до основания (кроме южной оконечности) и его нижние слои смерзлись с поверхностью скального ложа, где температура составляет -10...-13°С. В Антарктиде взаимоотношения между ледниковым покровом и горными породами сложнее. Установлено, что в ее центральной части подо льдами толщиной 3-4 км существуют подледные озера. По мнению В. М. Котлякова, природа их может быть двоякой: либо они связаны с плавлением льда за счет внутриземного тепла, либо образовались за счет тепла трения, возникающего в процессе движения ледника. Центральная часть ледника окружена замкнутым поясом, где скальные породы проморожены на глубину 500 м. По периферии Антарктического ледникового покрова располагается кольцевая зона, для которой характерно таяние льда в основании за счет тепла движения ледника.

Горные ледники имеют несоизмеримо меньшие размеры, весьма разнообразную форму, зависящую от формы их вместилищ. Движение горных ледников определяется уклоном ложа и носит линейный характер, скорость движения больше, чем у покровных ледников. Горные ледники подразделяют на три группы: ледники вершин (плоских и конических вершин), ледники склонов (присклоновые, каровые и висячие) и ледники долин (простой долинный ледник – альпийский тип и сложный долинный ледник – гималайский тин). У горных ледников хорошо выражены область питания (фирновый бассейн), область транзита и область таяния. Питание происходит за счет снега, частично за счет сублимации водяного пара, лавин и метелевого переноса. В области таяния ледниковые языки спускаются в зону высокогорных лугов и лесов, где лед не только интенсивно тает, но и «испаряется», а также обламывается в пропасти. Крупнейшим в мире долинным ледником считается ледник Ламберта в Восточной Антарктиде длиной 450 км и шириной 30-120 км. Он берет начало в северной части Долины Международного Геофизического года и вливается в шельфовый ледник Эймери. Наиболее длинные ледники в горах – на Аляске: ледник Беринг (203 км) – в хребте Чугач и ледник Хаббард (112 км) – в горах Святого Ильи.

Промежуточное положение между горными и покровными ледниками занимают горно-покровные ледники: ледники предгорий (подножий) и ледники плато, которые выделены В. М. Котляковым в особый тип. Ледники предгорий образуются из нескольких потоков с различными областями питания, которые сливаются у подножий гор на предгорных равнинах в единую «ледниковую дельту». Таков, например, ледник Маляспина (площадь 2200 км2) на южном побережье Аляски. Они свойственны субполярным и полярным горным странам с обильными снегопадами и низко лежащей снеговой границей (700-800 м).

Ледники плато, иначе «сетчатое оледенение», возникают вследствие того, что ледники из-за обильного питания переполняют межгорные долины, перетекают через низкие части хребтов и сливаются между собой. В результате образуется сплошное поле льда с цепочками «островов» на месте хребтов. Изолированные скалистые вершины, выступающие над поверхностью ледника, называются нунатаками (например, на архипелаге Шпицберген). Нунатаки весьма характерны также для краевых частей ледниковых покровов Антарктиды и Гренландии.

Ледники, будучи следствием климатических условий, сами оказывают огромное влияние на климат Земли, особенно покровные ледники Антарктиды и Гренландии. Огромный ледяной материк Антарктида, где круглый год сохраняется барический максимум, из которого дуют леденящие ветры в умеренные широты,– одна из главных причин того, что южное полушарие Земли холоднее северного. Благодаря Гренландскому ледниковому покрову и Восточно-Гренландскому холодному течению Исландский барический минимум существует круглый год, тогда как его аналог – Алеутский минимум, расположенный вдали от ледниковых покровов, ярко выражен лишь зимой. Влиянием Гренландского ледникового щита через циркуляцию атмосферы и воды (Восточно-Гренландское холодное течение) объясняется и оледенение Исландии.

Высокое альбедо снежно-ледниковых поверхностей (80-90%) в условиях малооблачной погоды обусловливает отрицательный годовой радиационный баланс на ледяных плато, что отражается на радиационном балансе земного шара. В летний период года на таяние снега и льда и на испарение расходуется такое большое количество тепла, что в полярных районах сохраняется отрицательная температура воздуха. Поэтому в целом ледниковые покровы существенно воздействуют на энергетику атмосферы.

В ледниках законсервировано большое количество пресной воды. По расчетам, суммарный ледниковый сток, поступающий в Мировой океан, составляет около 3850 км3в год, что эквивалентно половине всего современного мирового водосбора. Он образуется преимущественно в результате откалывания айсбергов (76%), поверхностного таяния ледников (12,6%) и их донного таяния (11,4%). По данным Р. К. Клиге. ежегодно в результате ледникового стока поступает в океан с Антарктического континента около 2,8 тыс. км3 воды, с Гренландии – около 0,7 км3 и с Арктических островов – приблизительно 0,4 км3. Горные ледники расходуют воду на питание рек. Для засушливых районов мира ледниковое питание рек имеет важное хозяйственное значение. В последние годы возникла идея транспортировки айсбергов Антарктиды с помощью мощных морских буксиров в районы «жажды» – Аравию, Африку, Австралию, Калифорнию и др. Решение технических вопросов не снимает экологических проблем: пока трудно дать прогноз влияния айсбергов на микроклимат, флору и фауну на всем пути их следования и особенно в местах доставки.





Дата публикования: 2015-02-03; Прочитано: 1192 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...