Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Различные формы записи ЗЛП. Переход от одной формы к другой



Задачей линейного программирования (ЛП) называется задача минимизации или максимизации линейного функционала при линейных ограничениях. В литературе принят ряд специальных форм записи задачи ЛП:

5. Форма общей задачи ЛП (задача ЛП со смешанными ограничениями) - найти максимум по переменным линейного функционала
c1x1 + c2x2 → max

(0.10)


при линейных ограничениях
A11x1 + A12x2 ≤ b1,

(0.11)


A21x1 + A22x2 = b2,

(0.12)

x1 ≥ 0.

(0.13)

Здесь , матрицы A11, A12, A21, A22 имеют соответственно размеры
(m1 × n1), (m1 × n2), (m2 × n1), (m2 × n2).

6. Форма основной задачи ЛП

(c, x) → max


при линейных ограничениях

Ax ≤ b

Здесь - матрица размера (m × n).

7. Стандартная форма записи задачи ЛП

(c, x) → max

при линейных ограничениях Ax ≤ b, x ≥ 0

Здесь - матрица размера (m × n).

8. Каноническая форма записи задачи ЛП

(c, x) → max


при линейных ограничениях

Ax = b

x ≥ 0

Формально говоря, задачи 2-4 являются частными случаями общей задачи 1. Однако в свою очередь общая задача может быть представлена в форме любой из трех остальных. Так задача 1 принимает основную форму, если заменить в ней систему ограничений-равенств на эквивалентную систему ограничений-неравенств

A21x1 + A22x2 ≤ b2

-A21x1 - A22x2 ≤ -b2

Если сделать замену переменных
x2 = y2 - z2, y2 &ge 0, z2 ≥ 0,
то задача 1 примет стандартную форму. Если же ограничения неравенства в задаче 1 записать в виде

A11x1 + A12x2 + u = b1

где - дополнительная переменная(формально входящая в целевой функционал с нулевым коэффициентом) и вновь использовать замену переменных, то задача 1 будет иметь форму канонической задачи. Вообще, любую задачу ЛП, на минимум или максимум, с неравенствами, направленными в ту или иную сторону, можно представить в любой из указанных форм. Для этого, наряду с приемами, перечисленными выше, необходимо использовать умножение целевой функции или ограничений-неравенств на (-1), что позволяет переходить от максимизации к минимизации и менять знаки неравенств.

3. Геометрическая интерпретация задач линейного программирования

Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n =2 и n =3.

Наиболее наглядна эта интерпретация для случая n =2, т.е. для случая двух переменных и. Пусть нам задана задача линейного программирования в стандартной форме

(1.19)

Возьмём на плоскости декартову систему координат и каждой паре чисел поставим в соответствие точку на этой плоскости.

Обратим прежде всего внимание на ограничения и . Они из всей плоскости вырезают лишь её первую четверть (см. рис. 1). Рассмотрим теперь, какие области соответствуют неравенствам вида . Сначала рассмотрим область, соответствующую равенству . Как Вы, конечно, знаете, это прямая линия. Строить её проще всего по двум точкам.

Пусть . Если взять , то получится . Если взять , то получится . Таким образом, на прямой лежат две точки и Дальше через эти две точки можно по линейке провести прямую линию (смотри рисунок 2).


Если же b=0, то на прямой лежит точка (0,0). Чтобы найти другую точку, можно взять любое отличное от нуля значение и вычислить соответствующее ему значение .

Эта построенная прямая разбивает всю плоскость на две полуплоскости. В одной её части , а в другой наоборот . Узнать, в какой полуплоскости какой знак имеет место проще всего посмотрев, какому неравенству удовлетворяет какая-то точка плоскости, например, начало координат, т.е. точка (0,0).

Пример

Определить полуплоскость, определяемую неравенством .

Решение

Сначала строим прямую . Полагая получим или . Полагая получим или . Таким образом, наша пря- мая проходит через точки (0, -1/2) и (3/4, 0) (см. рис. 3)

Теперь посмотрим, в какой полуплоскости лежит точка (0,0), т.е. начало координат. Имеем , т.е. начало координат принадлежит полуплоскости, где . Тем самым определилась и нужная нам полуплоскость (см. рис. 3).

Вернёмся теперь к задаче линейного программирования. Там имеют место m неравенств

(1.20)

Каждое из них задает на плоскости некоторую полуплоскость. Нас интересуют те точки, которые удовлетворяют всем этим m неравенствам, т.е. точки, которые принадлежат всем этим полуплоскостям одновременно. Следовательно, область, определяемая неравенствами вида (1.20), геометрически изображается общей частью (пересечением) всех полуплоскостей, определяемых отдельными ограничениями (к ним, естественно, надо добавить ограничения и ).

Как уже говорилось выше, эта область называется допустимой областью задачи линейного программирования.

Графический метод решения задачи линейного программирования (1 вариант).

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трёхмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трёх изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, то есть ограничения содержат две переменные. Найти минимальное значение функции

при

Допустим, что система (2) при условии (3) совместна и её многоугольник решений ограничен. Каждое из неравенств (2) и (3), как отмечалось выше, определяет полуплоскость с граничными прямыми: . Линейная функция (1) при фиксированных значениях является уравнением прямой линии: . Построим многоугольник решений системы ограничений (2) и график линейной функции (1) при . Тогда поставленной задаче линейного программирования можно дать следующую интерпретацию. Найти точку многоугольника решений, в которой прямая опорная и функция при этом достигает минимума.

Значения возрастают в направлении вектора , поэтому прямую передвигаем параллельно самой себе в направлении вектора . Прямая дважды становится опорной по отношению к многоугольнику решений (в точках и ), причем минимальное значение принимает в точке . Координаты точки находим, решая систему уравнений прямых и .


Если многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая.

Случай 1. Прямая , передвигаясь в направлении вектора или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу.

Случай 2. Прямая, передвигаясь, всё же становится опорной относительно многоугольника решений. Тогда в зависимости от вида области линейная функция может быть ограниченной сверху и неограниченной снизу, ограниченной снизу и неограниченной сверху, либо ограниченной как снизу, так и сверху.

Графический метод решения задач линейного программирования (2 вариант).

Наиболее простым и наглядным методом линейного программирования (ЛП) является графический метод. Он применяется для решения задач ЛП с двумя переменными.

Рассмотрим задачу ЛП в стандартной форме записи:

Положим n=2, т.е. рассмотрим эту задачу на плоскости. Пусть система неравенств совместна (имеет хотя бы одно решение).

Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой ai1 x1 + ai2 x2 = bi, i=1,2,…m. Условия неотрицательности определяют полуплоскости, соответственно, с граничными прямыми x1=0,x2 =0. Система совместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы. Совокупность этих точек называют многоугольником решений. Он может быть точкой, отрезком, лучом, многоугольником, неограниченной многоугольной областью.

Таким образом, геометрически задача линейного программирования (ЗЛП) представляет собой отыскание такой точки многоугольника решений, координаты которой доставляют линейной функции цели максимальное (минимальное) значение, причем допустимыми решениями являются все точки многоугольника решений.

Линейное уравнение описывает множество точек, лежащих на одной прямой. Линейное неравенство описывает некоторую область на плоскости. Определим, какую часть плоскости описывает неравенство 1+3х2£ 12. Во-первых, построим прямую 1+3х2=12. Эта прямая проходит через точки (6, 0) и (0, 4). Для того чтобы определить, какая полуплоскость удовлетворяет неравенству необходимо выбрать любую точку на графике, не принадлежащую прямой, и подставить ее координаты в неравенство. Если неравенство будет выполняться, то данная точка является допустимым решением и полуплоскость, содержащая точку, удовлетворяет

неравенству. Удобной для использования при подстановке в неравенство является начало координат. Подставим х12=0 в неравенство 1+3х2£12. Получим 2´0+3´0£12. Данное утверждение является верным, следовательно, неравенству 2х1+3х2£12 соответствует нижняя полуплоскость, содержащая точку (0.0). Это отражено на графике, изображенном на рис.1.

 
 

Рис. 1. Неравенству 2х1+3х2£12 соответствует нижняя полуплоскость.

Аналогично можно изобразить графически каждое ограничение задачи линейного программирования.

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью допустимых решений или областью определения. Необходимо помнить, что область допустимых решений удовлетворяет условиям неотрицательности (xj ³0, j=1,…,n). Координаты любой точки, принадлежащей области определения являются допустимым решением задачи.

Для нахождения экстремального значения целевой функ­ции при графическом решении задач ЛП используют вектор–градиент, координаты которого являются частными производными целевой функции, т.е.

.

Этот вектор показывает направление наискорейшего изменения це­левой функции. Прямая , перпендикулярная вектору–градиенту, является линией уровня целевой функции. В любой точке линии уровня целевая функция принимает одно и то же значение. Приравняем целевую функцию постоянной величине “a”. Меняя значение “a”, получим семейство параллельных прямых, каждая из которых является линией уровня.

Важное свойство линии уровня линейной функции состоит в том, что при параллельном смещении линии в одну сторону уровень только возрастает, а при смещении в другую сторону – убывает.

С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Графический метод решения ЗЛП состоит из следующих этапов.

1. Строится многоугольная область допустимых решений ЗЛП – ОДР,

2. Строится вектор-градиент ЦФ в какой-нибудь точке Х0 принадлежащей ОДР –

.

3. Линия уровня C1x1+C2x2 = а (а –постоянная величина) - прямая, перпендикулярная вектору –градиенту – передвигается в направлении этого вектора в случае максимизации f(x1,x2) до тех пор, пока не покинет пределов ОДР. Предельная точка (или точки) области при этом движении и является точкой максимума f(x1,x2).

4. Для нахождения ее координат достаточно решить два уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку максимума. Значение f(x1,x2), найденное в получаемой точке, является максимальным.

При минимизации f(x1,x2) линия уровня перемещается в направлении, противоположном вектору-градиенту. Если прямая при своем движении не покидает ОДР, то соответствующий максимум или минимум f(x1,x2) не существует.

Если линия уровня параллельна какому-либо функциональному ограничению задачи, то оптимальное значение ЦФ будет достигаться в любой точке этого ограничения, лежащей между двумя оптимальными угловыми точками, и, соответственно, любая из этих точек является оптимальным решением ЗЛП.

5. Основные теоремы линейного программирования

Для обоснования методов решения задач линейного программирования сформулируем ряд важнейших теорем, опуская их аналитические доказательства. Уяснить смысл каждой из теорем поможет понятие о геометрической интерпретации решения ЗЛП, данное в предыдущем подразделе.

Однако сначала напомним о некоторых понятиях, важных с точки зрения дальнейшего разговора.

Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными, если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные m-n переменных называются неосновными (или свободными).

Базисным решением системы m линейных уравнений c n переменными (m < n) называется всякое ее решение, в котором все неосновные переменные имеют нулевые значения.

Теорема 1. Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым.

В частном случае, когда в систему ограничений входят только две переменные x1 и x2, это множество можно изобразить на плоскости. Так как речь идет о допустимых решениях (x1, x2 ≥ 0), то соответствующее множество будет располагаться в первой четверти декартовой системы координат. Это множество может быть замкнутым (многоугольник), незамкнутым (неограниченная многогранная область), состоять из единственной точки и, наконец, система ограничений-неравенств может быть противоречивой.

Теорема 2. Если задача линейного программирования имеет оптимальное решение, то оно совпадает с одной (двумя) из угловых точек множества допустимых решений.

Из теоремы 2 можно сделать вывод о том, что единственность оптимального решения может нарушаться, причем, если решение не единственное, то таких оптимальных решений будет бесчисленное множество (все точки отрезка, соединяющего соответствующие угловые точки).

Теорема 3. Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка области допустимых решений, и наоборот.

Следствием из теорем 2 и 3 является утверждение о том, что оптимальное решение (оптимальные решения) задачи линейного программирования, заданной (или приведенной) ограничениями-уравнениями, совпадает с допустимым базисным решением (допустимыми базисными решениями) системы ограничений.

Таким образом, оптимальное решение ЗЛП следует искать среди конечного числа допустимых базисных решений.

А)Понятие опорного плана ЗЛП.





Дата публикования: 2015-02-03; Прочитано: 2323 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...