Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ди- и полигибридное скрещивание. Независимое комбинирование неаллельных генов. Цитологические и статистические основы дигибридного скрещивания



При полигибридном скрещивании родительский организм анализируется по нескольким признакам. Примером полигибридного скрещивания может служить дигибридное, при котором у родительских организмов принимаются во внимания отличия по двум парам признаков. Первое поколение гибридов в этом случае оказывается однородным, проявляются только доминантные признаки, причем доминирование не зависит от того, как признаки были распределены между родителями.

Изучая расщепление при дигибридном скрещивании, Мендель обнаружил, что признаки наследуются независимо друг от друга. Эта закономерность, известная как правило независимого комбинирования признаков: при скрещивании гомозиготных особей, отличающихся двумя (или более) парами альтернативных признаков, во втором поколении (F2) наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их расположены в различных гомологичных хромосомах.

Цитологические основы дигибридного скрещивания. Как известно, в профазе 1 мейоза гомологичные хромосомы конъюгируют, а в анафазе одна из гомологичных хромосом отходит к одному полюсу клетки, а другая — к другому. При расхождении к разным полюсам негомологичные хромосомы комбинируются свободно и независимо друг от друга. При оплодотворении в зиготе восстанавливается диплоидный набор хромосом и гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.

25. Взаимодействие аллелей в детерминации признаков: полное и неполное доминирование, кодоминирование, сверхдоминирование. Множественные аллели. Наследование групп крови.

При полном доминировании фенотип гетерозиготы не отличается от фенотипа доминантнойгомозиготы. Видимо, в чистом виде полное доминирование встречается крайне редко или не встречается вовсе. Например, люди, гетерозиготные по гену гемофилии А (сцепленный с Х-хромосомой рецессивный ген), имеют половинное количество нормального фактора свертывания по сравнению с гомозиготными по нормальному аллелю людьми, и активность фактора свертывания VIII у них в среднем вдвое ниже, чем у здоровых людей. В то же время у здоровых людей активность этого фактора варьирует от 40 до 300 % по сравнению со средней для популяции. Поэтому наблюдается значительное перекрывание признаков у здоровых и носителей-гетерозигот. При фенилкетонурии (аутосомно-рецессивный признак) гетерозиготы обычно считаются здоровыми, однако активность печёночного фермента фенилаланин-4-гидроксилазы у них вдвое ниже нормы, а содержание фенилаланина в клетках повышено, что, по некоторым данным, приводит к снижению IQ и повышенному риску развития некоторых психотических расстройств.

При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. На молекулярном уровне самым простым объяснением неполного доминирования может быть как раз двукратное снижение активности фермента или другого белка (если доминантный аллель дает функциональный белок, а рецессивный — дефектный). Например, за белую окраску может отвечать дефектный аллель, который дает неактивный фермент, а за красную — нормальный аллель, который дает фермент, производящий красный пигмент. При половинной активности этого фермента у гетерозигот количество красного пигмента снижается вдвое, и окраска розовая. Могут существовать и другие механизмы неполного доминирования.

При неполном доминировании во втором поколении моногибридного скрещивания наблюдается одинаковое расщепление по генотипу и фенотипу в соотношении 1:2:1.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип. На уровне РНК и белковых продуктов генов, видимо, подавляющее большинство случаев аллельных взаимодействий генов — это кодоминирование, ведь каждый из двух аллелей у гетерозигот обычно кодирует РНК и/или белковый продукт, и оба белка или РНК присутствуют в организме.

Сверхдоминирование — это явление преимущества класса гетерозигот по сравнению с возможными, для данного гена и аллелей, классами гомозигот. Фенотипически, как правило, в случае сверхдоминирования гетерозиготы не обладают особыми внешними признаками. Преимущество связано с биохимическими особенностями.

Один из характерных примеров сверхдоминирвания является повышенная частота аллеля гена серповидноклеточной анемии в популяциях человека, живущих в условиях высокой вероятности заражения малярией. Мутантный аллель защищает организм от заболевания малярией. Гомозиготы по нормальномуаллелю могут заболеть малярией и погибнуть, гомозиготы по мутантномуаллелю - с высокой вероятностью гибнут от анемии. Гетрозиготы по этому гену не болеют серповидновлеточной анемией и устойчивы к малярии.

Преимущество гетерозигот так же показано по многим генам и у многих организмов. Для Drosophilamelanogaster показаны эффекты сверхдоминирования по гену алкогольдегидрогеназы в лабораторных популяциях.

В ряде случаев аллель гена, с которым связано сверхдоминирование является рецессивно летальным, и поддерживается в популяции за счёт преимущества гетерозигот. К таким случаям относится например система летальных аллелей гена lethalgiantlarvae. Гетерозиготы, имеющие нормальный и мутантный вариант этого гена, в ряде случаев, характеризуются повышенной жизнеспособностью.

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

Наследование групп крови по законам Менделя:

26. Взаимодействие неаллельных генов: эпистаз, комплементарность, полимерия.

Неалле́льныеге́ны — это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между со­бой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов:

1. комплементарность;

2. эпистаз;

3. полимерия.

Комплемента́рное (дополнительное) действие генов — это вид взаимодействия неаллельныхгенов, доминантные аллели кото­рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обу­словливает сферическую форму плодов, а рецессивных — удли­нённую. При наличии в генотипе одновременно доминантных ге­нов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фе­нотипу: из каждых 16 растений 9 будут иметь дисковидные пло­ды, 6 — сферические и 1 — удлинённые.

Эписта́з — взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый — гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I> В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз — это подавление рецессивным аллелемэпистатичного гена аллелей гипостатичного гена (i> В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимери́я — взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же при­знака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопи­тельной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных алле­лей генов, тем сильнее выражен тот или иной признак. Расщепле­ние F2 но фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

Пример: цвет кожи у людей, который зависит от четырёх генов.





Дата публикования: 2015-02-03; Прочитано: 3075 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...