Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Понятие о градиенте, дивергенции и роторе



Градиент скалярной функции – это вектор, указывающий направление наиболее быстрого возрастания скалярной функции и по абсолютному значению равный наибольшей скорости возрастания этой функции.

(14.12)

Градиент направлен по нормали к поверхности равного уровня скалярной функции в данной точке. Градиент скалярного потенциала φ постоянного во времени поля равен:

(14.13)

где – нормаль к эквипотенциальной поверхности в данной точке поля.

Градиент скалярного потенциала φ в каждой точке совпадает с касательной к силовой линии напряженности электрического поля в данной точке и имеет направление, противоположное вектору (рис. 14.3).

Рис. 14.3. Картина электрического поля

Дивергенция (расхождение вектора) – это алгебраическая скалярная величина, характеризующая источники поля в рассматриваемой точке поля или указывающая на отсутствие источников

.

Численно дивергенцию в данной точке определяют как предел, к которому стремится отношение потока вектора через замкнутую поверхность к объему, ограниченному этой поверхностью, при стремлении этого объема к нулю

.(14.14)

Если div > 0, то имеются источники поля и линии вектора расходятся из данной точки. Точка наблюдения служит началом (истоком) линий вектора .

Если div < 0, то в точке наблюдения линии вектора сходятся, т.е. она служит стоком линий вектора .

Если div = 0, то в рассматриваемой точке отсутствует источник линий вектора .

Картина электрического поля при наличии и отсутствии зарядов показана на рис. 14.4. Например, если имеется объемный положительный заряд +ρ, то он является истоком вектора электрического смещения .

Рис. 14.4. Электрическое поле при наличии и отсутствии электрических зарядов

Дивергенция вектора магнитной индукции всегда равна нулю, так как линии вектора замкнуты (не имеют начала и конца).

В декартовой системе координат

(14.15)

Ротор (вихрь) вектора поля rot – это вектор, характеризующий интенсивность вихревых полей в каждой точке. Ротор проявляет себя как вихрь, поэтому он имеет ось. Направление оси определяет направление вектора, изображающего ротор.

Численно составляющую ротора в направлении нормали к плоской площадке Δ s определяют как предел, к которому стремится отношение циркуляции вектора к площадке Δ s, ограниченной контуром интегрирования, при стремлении ее к нулю (рис. 14.5)

. (14.16)

Если вихревое поле в некоторой области не имеет внутри источников векторных линий, то rot ≠ 0 (div = 0).

Запишем ротор вектора в декартовой системе координат

(14.17)

Рис. 14.5. К пояснению определения ротора вектора

где: . (14.18)

(14.19)

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ ФГБОУ ВПО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ЗАУРАЛЬСКИЙ ФИЛИАЛ Экзаменационный билет №21 Кафедра: ФИЗИКИ, МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Дисциплина: Теоретические основы электротехники Направления «Агроинженерия» II курс УТВЕРЖДЕНО НА ЗАСЕДАНИИ КАФЕДРЫ «» 2012 г. Зав. кафедрой ____________Музафаров С. М.      

Формы записи уравнений Максвелла.

Основные положения индуктивно связанных цепей.

Задача.





Дата публикования: 2015-01-26; Прочитано: 997 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...