Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Единство химического состава тел Вселенной и Земли



Все многочисленные тела как живой, так и неживой природы состоят из мельчайших материальных частичек-атомов различных химических элементов. Число этих химических элементов и их единство определяются великим законом природы — периодическим законом Д. И. Менделеева. Но возникает ещё вопрос, требующий ответа. Из какого вещества, из каких элементов состоят небесные тела, звёзды и планеты? Справедлив ли закон Менделеева и для Вселенной? Да, справедлив.

Уже издавна люди наблюдали падение на землю «небесных камней» — метеоритов. В прежние времена таким камням нередко даже поклонялись, как «посланцам богов». В настоящее время мы знаем, что метеориты — это обломки других небесных тел Вселенной.

Естественно, что очень интересно выяснить, из каких химических элементов состоят «небесные камни». Многочисленные анализы метеоритов, как каменных, так и железных, показали, что осколки вещества, попадающие к нам из глубин Вселенной, состоят из тех же химических элементов, которые объединяет таблица Менделеева. Ни одного нового, неизвестного на земле элемента в составе метеоритов нет. Определён теперь и состав раскалённых небесных тел — солнца и звёзд. Об этом человеку рассказали лучи света, приходящие на Землю от далёких звёзд.

В середине прошлого века философ О. Конт, пытаясь доказать, что наше познание природы ограничено, приводил такой пример: человек никогда не узнает, из чего состоят звёзды и солнце, какова температура этих небесных тел и т. д. Ведь солнце и звёзды — это раскалённые небесные тела. Если даже предположить, что в отдалённом будущем люди построят межпланетные летательные аппараты, они всё равно не смогут приблизиться к поверхности солнца и звёзд, так как температура этих небесных тел очень высока. Наука опровергла ложные доводы этого философа. Всего несколько лет спустя после этого высказывания Конта был открыт новый плодотворный способ исследования небесных тел — спектральный анализ.

Сущность этого способа, коротко говоря, состоит в следующем: белый свет, который мы наблюдаем в жизни, при определённых условиях разлагается на цветные лучи. В этом можно убедиться при помощи очень простого опыта. Поставьте на пути луча света кусок стекла, имеющий вид клина, так называемую трёхгранную призму. Проходя через такую призму, свет меняет своё прямолинейное направление или, как говорят, преломляется в ней и одновременно разлагается на составляющие его цветные лучи. Образуется так называемый спектр цветных лучей. В спектре принято выделять семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый, переходящие друг в друга. Объясняется это явление тем, что лучи разных цветов по-разному преломляются в трёхгранном куске стекла — менее других отклоняются в призме красные лучи, более всех других лучей — фиолетовые.

Изучая спектры света от различных источников, учёные обнаружили одну замечательную их особенность. Свет, который исходит от раскалённых твёрдых и жидких тел, даёт всегда сплошной спектр, т. е. цветные лучи-полоски следуют в нём друг за другом и всегда в одном и том же порядке.

Совсем иной спектр получается, если свет испускают раскалённые пары какого-либо вещества. Этот спектр состоит из тонких цветных линий, разделённых тёмными полосками. Такой спектр называется линейчатым.

И вот оказывается, что каждый химический элемент имеет свой, отличный от других линейчатый спектр. Например, раскалённые пары натрия дают спектр, состоящий из двойной жёлтой линии; в спектре паров элемента лития имеются характерные — одна красная и одна оранжевая—линии; раскалённые пары калия показывают две характерные линии — красную и фиолетовую и т.д.

Открытие этой замечательной особенности — способности веществ давать свой, отличный от других спектр излучения, когда они находятся в состоянии раскалённых газов, и явилось основой необычайно чувствительного спектрального анализа*). С помощью этого способа исследования в первые же годы его применения было крыто несколько новых, ранее неизвестных химических элементов (в том числе упомянутый ранее галлий). Содержание этих элементов в земле очень рассеяно, поэтому ранее они ускользали от внимания исследователя. Способ спектрального исследования тел природы позволил обнаруживать миллионные и миллиардные доли грамма вещества.

Каждое новое простое тело давало о себе знать новым сочетанием цветных линий в спектре, новым линейчатым спектром. Спектральное исследование лучей света, идущих от небесных тел, и позволило определить, из каких элементов состоят звёзды.

Ещё до открытия линейчатых спектров было замечено, что спектр солнечных лучей, который долгое время считали сплошным, на самом деле не сплошной, а пересекается множеством тонких тёмных линий.

Разгадка этих линий была найдена после открытия спектрального анализа. Оказывается, тёмные линии образуются в спектре потому, что свет на своём пути проходит через несветящиеся пары некоторых элементов. Так, например, если свет проходит через охлаждённые пары калия, то в сплошном спектре, в местах, где располагаются цветные линии этого элемента—красная и фиолетовая, — появятся соответственно две тёмные линии. Такие спектры, состоящие из тёмных линий на фоне цветных полос, называют спектрами поглощения. Спектры поглощения и помогли узнать состав небесных тел.

Изучение спектра поглощения солнечных лучей показало, что солнечный свет проходит на своём пути через более холодные пары очень многих химических элементов — железа, водорода, гелия, натрия, кальция, кремния и других.

Где же находятся эти пары? Дать на него ответ не представляло трудности. Известно, что в атмосфере Земли нет паров всех тех элементов, о которых говорит солнечный свет. Не могут эти элементы находиться также в межзвёздном пространстве, и вот по какой причине. Спектры поглощения света, идущего от разных звёзд, различны. Значит, свет разных звёзд встречает на своём пути к Земле разные химические элементы (в виде охлаждённых, несветящихся паров). Отсюда ясно, что все те химические элементы, о которых говорят солнечный свет и свет звёзд, находятся в виде паров у самого Солнца, у самой звезды в их внешних, более холодных слоях. Обнаруженные исследованием элементы должны, следовательно, входить в состав этих небесных тел.

Изучение спектров солнечного света показало, что на Солнце больше всего водорода, а затем гелия. Открыто там много и других химических элементов (кислород, кальций, железо, магний, натрий и др.), но все вместо они составляют очень малую долю по сравнению с водородом. На Солнце не обнаружено никаких химических элементов, помимо тех, которые имеются на Земле. Это указывает на то, что небесные тела состоят из тех же веществ, что и Земля. Но на разных небесных телах вещество может находиться в самых различных состояньях.

Корона во внутренней части представляет собой чрезвычайно разреженное облако легких частичек, главным образом частичек электричества - электронов, выделяющихся из нижележащих слоев. Все они быстро движутся в разных направлениях, но преимущественно в сторону от Солнца. Скорость их так же велика, как у газа при температуре до миллиона градусов. Во внешней части короны к ним примешаны и частички пыли, которая носится в межпланетном пространстве.

Астрономы много сделали для изучения различных явлений на Солнце, в особенности во время полных солнечных затмении. Ведь те несколько минут, в течение которых происходит полное солнечное затмение, являются лучшим временем для наблюдения солнечной короны, хромосферы, протуберанцев и многих других явлений, происходящих на Солнце.

Изучение спектров небесных тел с неопровержимой убедительностью доказало материальное единство Вселенной. Многочисленные спектры Солнца, звёзд, туманностей показали, что ни на одном из небесных тел нет таких элементов, которые были бы неизвестны нам, жителям Земли, нет элементов, которые не входят в периодическую таблицу элементов Д. И. Менделеева. Так, в настоящее время на Солнце найдено уже более 60 химических элементов и все они известны нам по таблице Менделеева.

Состав нейтронных звёзд

Нейтронные звезды – это одни из наиболее интересных небесных тел в космосе. Несмотря на крайне малый размер (не более 20км в диаметре) они обладают невероятно высокой плотностью. Вследствие этого, щепотка вещества с этой звезды будет весить более 500 млн. тонн. Из-за гравитации электроны вдавливаются в протоны, переходя в нейтроны, что и послужило названием для этих звезд.

Исследуя нейтронные звезды, физики-теоретики разработали модели поведения материи в условиях высокой плотности. Итогом стала гипотеза о существовании сверхтекучей жидкости. Подобная жидкость создавалась в лабораторных условиях. Отличительными свойствами является способность течь вверх и утекать из герметично закрытых контейнеров.

Нейтронные звезды образуются в результате взрыва сверхновых и представляют собой конечный этап жизни светила. Они состоят из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля. Размер таких небесных тел очень мал — около 20-30 километров в диаметре. Зато плотность чрезвычайно высока.

Когда были обнаружены нейтронные звезды, ученые предположили, что материя, из которой состоят их ядра, может переходить в сверхтекучее состояние — при этом ее вязкость становится равной нулю и отсутствие трения позволяет веществу, к примеру, с легкостью просачиваться через узкие отверстия… Под воздействием высоких давлений и температур происходят процессы образования нейтрино, способствующих охлаждению звезды. Одним из свойств таких объектов является изменение их температуры и магнитного поля. Однако до недавних пор все эти предположения существовали лишь в теории и не подтверждались фактическими доказательствами.

В земных лабораториях сверхпроводимость теряет свою силу при температурах свыше 100-200С ниже нуля. Но, при высоком давлении внутри нейтронной звезды, свойства сохраняются при миллиарде градусов. Для того чтобы получить сверхтекучую жидкость, гелий охлаждают до температуры, близкой к абсолютному нулю. Но, в нейтронных звездах она может появляться при миллиарде градусов, вследствие того, что частицы при такой температуре влияют друг на друга с помощью мощного ядерного взаимодействия. В результате, кварки удерживаются внутри частиц, а нейтроны и протоны остаются внутри атомного ядра. Достаточно долго ученые не могли определить значение критической температуры, но теперь она известна и составляет от 500 миллионов до миллиарда градусов Цельсия.

Итак, ядро нейтронной звезды состоит из сверхтекучей нейтронной жидкости, вырожденных протонов и сверхпроводящих протонов, а верхний слой из твердой коры железа. Изначально температура составляет около миллиарда градусов, но звезда достаточно быстро остывает, теряя свою светимость. Но, они достаточно сильно излучают радиоволны в направлении магнитной оси.

Недавно астрофизики обратили внимание на то, что звезда Кассиопея А быстро охлаждается. Ученые смогли определить параметры падения температуры, однако у них не хватало данных наблюдений, чтобы уточнить, при какой температуре происходит переход в жидкую форму. Позже выяснилось что с 1999 года, когда была обнаружена Кассиопея А, ее температура снизилась на 4%.

Химический состав

«По химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0.3 атома железа.
Существуют звезды, имеющие повышенное содержание того или иного элемента. Так, известны звезды с по повышенным содержанием кремния (кремниевые звезды), звезды, в которых много железа (железные звезды), марганца (марганцевые), углерода (углеродные) и т. п. Звезды с аномальным составом элементов довольно разнообразны. В молодых звездах типа красных гигантов обнаружено повышенное содержание тяжелых элементов. В одной из них найдено повышенное содержание молибдена, в 26 раз превышающее его содержание в Солнце. Вообще говоря, содержание элементов, атомы которых имеют массу, большую массы атома гелия, постепенно уменьшается по мере старения звезды. Вместе с тем, химический состав звезды зависит и от местонахождения звезды в галактике. В старых звездах сферической части галактики содержится немного атомов тяжелых элементов, а в той части, которая образует своеобразные периферические спиральные «рукава» галактики, и в ее плоской части имеются звезды, относительно богатые тяжелыми элементами. Именно в этих частях и возникают новые звезды. Поэтому можно связать наличие тяжелых элементов с особенностями химической эволюции, характеризующей жизнь звезды.
Очень интересны углеродные звезды. Это звезды относительно холодные - гиганты и сверхгиганты. Их поверхностные температуры лежат обычно в пределах 2500 - 6000С. При температурах выше 3500С при равных количествах кислорода и углерода в атмосфере большая часть этих элементов существует в форме оксида углерода CO. Некоторые типы звезд характеризуются повышенным содержанием металлов, расположенных в одном столбце периодической системы с цирконием; в этих звездах имеется неустойчивый элемент технеций 4399Тс. Ядра технеция могли образоваться из 98Мо в результате захвата нейтрона с выбрасыванием электрона из ядра молибдена или при фотопроцессе из 97Мо. Во всяком случае наличие нестабильного ядра - убедительное доказательство развития ядерных реакций в звездах».

Гипотезы о происхождении планет Солнечной системы

Вопросами происхождения планет Солнечной системы занимается космогония. Полного и исчерпывающего ответа на этот вопрос наука не дает. Пока нет возможности проверить выводы современных теорий применительно к какой-либо другой планетной системы. Рассмотрим наиболее известные космогонические гипотезы.

Гипотеза Канта-Лапласа. Кант предположил, что Солнечная система образовалась из космического облака, или «хаоса». Формируясь из сгущений, возникших в первичной туманности, планеты отдалялись от нее и от Солнца центробежными силами. Интересно, что Кант изложил эти идеи в трактате, посвященном доказательству бытия Божия. По мнению Канта «Бог вложил в силы природы тайное искусство самостоятельно развиваться из хаоса в совершенное мироздание». У Канта, таким образом, образование планет происходило из холодного газопылевого облака.

Идею Канта поддержал Лаплас, однако, согласно его гипотезе планеты образовались в результате отделения от раскаленного протосолнца газовых колец, их охлаждения и конденсации. Кольца разделялись на несколько масс, образовавших затем разные планеты.

Эта гипотеза получила название небулярной (от лат. nebula – туманность) гипотезы Канта-Лапласа. Поскольку формирование колец и планет происходило в условиях вращения туманности и действия центробежных сил, эта гипотеза называется еще и ротационной (лат. rotatio – вращение).

Гипотеза Джинса. Гипотеза Канта-Лапласа не могла объяснить также и тот факт, что момент количества движения (кинетический момент) планет приблизительно в 29 раз больше момента количества движения Солнца, а это противоречит закону сохранения кинетического момента. Для разрешения этого противоречия появились так называемые «катастрофические гипотезы», к которым относится гипотеза Джинса. Согласно ей некая звезда прошла неподалеку от Солнца и вызвала мощные приливы на нем, принявшие форму газовых струй, из которых впоследствии образовались планеты. Из этой гипотезы следовал вывод об уникальности Солнечной системы.

Гипотеза О.Ю. Шмидта. Советский ученый О.Ю. Шмидт (1891-1956) предположил, что Солнце, вращаясь вокруг центра Галактики, могло захватить материю, обладающую достаточным моментом количества движения. Расчеты Шмидта, в частности, показали, что начальный период обращения Солнца был очень большим, а затем должен был уменьшиться до 20 суток. В действительности он равен 25 суткам, и такое совпадение считается хорошим.

Ожидается, что новый свет на загадку образования Солнечной системы прольют дальнейшие исследования планет земной группы и планет-гигантов с помощью автоматических космических станций.

Первые космогонические гипотезы

Эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение пер­вых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел. Такой, например, оказалась гипотеза, предложенная немецким философом И. Кантом в середине XVIII в. Кант высказал догадку о том, что Солнечная система образовалась из облака пыли.

Подробнее картина образования Солнечной системы вырисовывалась в гипотезе, предложенной в конце XVIII в. французским ученым П. Лапласом. Лаплас рассматривал большую, медленно вращающуюся туманность, состоящую из разреженного горячего газа. При сжатии туманности скорость ее вращения возрастала, туманность сплющивалась. Из ее центральной части образовалось Солнце. По мере сжатия первичного Солнца угловая скорость его вращения вокруг оси увеличивалась (в силу закона сохранения момента количества движения) и в плоскости экватора Солнца стали отделяться газовые кольца. Из концентрической системы этих колец возникли планеты.

Картина получалась настолько наглядной, что очень долгое время гипотеза Лапласа была самой популярной. Однако в XX в. от гипотезы Лапласа пришлось отказаться, так как выяснилось, что она не может объяснить, например, распределение момента количества движения в Солнечной системе.

Современные представления о происхождении планет

На первый взгляд может показаться, что по сравнению с грандиозными проблемами космологии и звездной космогонии проблема происхождения Солнечной системы не очень трудна. На самом деле это не так. Проблема происхождения планет — очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и многих других естественных наук (прежде всего наук о Земле). Дело в том, что пока можно исследовать только единственную планетную систему, окружающую наше Солнце. Как выглядят более молодые и более старые системы, вероятно, существующие вокруг других звезд, неизвестно. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовались Солнце и другие звезды, потому что планетные системы возникают вокруг звезд в результате закономерных процессов развития материи. И все-таки, несмотря на трудности, ученые убеждены в том, что правильное объяснение будет найдено. Знать, как произошла наша планета, очень важно для дальнейшего развития геофизики, геохимии, геологии и других наук о Земле.

Проблемами планетной космогонии в настоящее время занимаются ученые разных стран. В формирование современной планетной космогонии значительный вклад внесли отечественные ученые. Так, например, на протяжении полувека проблемами планетной космогонии занимался академик В. Г. Фесенков (1889—1972), всегда подчеркивавший, что должна существовать тесная связь между процессом формирования Солнца и процессом формирования планет. В начале 40-х гг. с космогонической гипотезой выступил академик О. Ю. Шмидт (1891—1956).

Наиболее важные выводы планетной космогонии сводятся к следующему:

а) Планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда-то окружала Солнце. Эту туманность часто называют «допланетным» или «протопланетным» облаком. Считается, что Солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неясно, как произошло отделение части туманности, из которой возникли планеты, от «протосолнца».

Важнейшие этапы формирования планет

б) Формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от протосолнца», столкновение частиц, их укрупнение и т. д. Изменялась температура вещества туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с «протосолнцем». Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты). Теория, учитывающая все эти процессы, позволяет объяснить многие закономерности в Солнечной системе.

в) Спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, т. е. в конечном итоге тоже из вещества протопланетной туманности. Пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.

Таким образом, основная идея современной планетной космогонии сводится к тому, что планеты и их спутники образовались из холодных твердых тел и частиц.

Земля как планета в основном сформировалась за время порядка 100 млн. лет и вначале тоже была холодной. Последующий разогрев Земли происходил в результате ударов крупных тел (размером с астероиды), гравитационного сжатия, распада радиоактивных элементов и некоторых других физических процессов. Постепенно в процессе гравитационной дифференциации вещества (т. е. в процессе разделения вещества, состоящего из тяжелых и легких химических элементов) в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и др.), из которых образовалось ядро нашей планеты. Из более легких химических элементов и их соединений возникла мантия Земли.

Кремний и другие химические элементы стали основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородсодержащих соединений, как метан, аммиак, водяной пар. Со временем водород и гелий улетучились, а с появлением растений, способных «выдыхать» кислород, земная атмосфера начала обогащаться кислородом, наличие которого представляет одно из необходимых условий существования животного мира.





Дата публикования: 2015-01-26; Прочитано: 4168 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...