Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

http://www.relcom.ru/Internet/Literature/index.html 4 страница



- реляционная алгебра;

- реляционное исчисление.

Эти языки представляют минимальные возможности реальных языков манипулирования данными в соответствии с реляционной моделью и эквивалентны друг другу по своим выразительным возможностям. Существуют не очень сложные правила преобразования запросов между ними.

В реляционной алгебре операнды и результаты всех действий являются отношениями. Языки исчислений, в отличие от реляционной алгебры, являются непроцедурными (описательными, или декларативными) и позволяют выражать запросы с помощью предиката первого порядка (высказывания в виде функции), которому должны удовлетворять кортежи или домены отношений. Запрос к БД, выполненный с использованием подобного языка, содержит лишь информацию о желаемом результате. Для этих языков характерно наличие наборов правил для записи запросов. В частности, к языкам этой группы относится SQL.

Язык SQL предназначен для выполнения:

а) операций над таблицами (создание, удаление, изменение структуры);

б) над данными таблиц (выборка, изменение, добавление и удаление)

в) некоторых сопутствующих операций (управление доступом, управление индексами, управление транзакциями и др.).

SQL является непроцедурным языком и не содержит операторов управления, организации подпрограмм, ввода-вывода и т.п. В связи с этим SQL автономно не используется, обычно он погружен в среду встроенного языка программирования СУБД (например, FoxPro СУБД Visual FoxPro, ObjectPAL СУБД Paradox, Visual Basic for Applications СУБД Access).

В современных СУБД с интерактивным интерфейсом можно создавать запросы, используя другие средства, например QBE. Однако применение SQL зачастую позволяет повысить эффективность обработки данных в базе. Например, при подготовке запроса в среде Access можно перейти из окна Конструктора запросов (формулировки запроса по образцу на языке QBE) в окно с эквивалентным оператором SQL. Подготовку нового запроса путем редактирования уже имеющегося в ряде случае проще выполнить путем изменения оператора SQL. В различных СУБД состав операторов SQL может несколько отличаться.

Язык SQL не обладает функциями полноценного языка разработки, а ориентирован на доступ к данным, поэтому его включают в состав средств разработки программ. В этом случае его называют встроенным SQL. Стандарт языка SQL поддерживают современные реализации следующих языков программирования: PL/1, Ada, С, COBOL, Fortran, MUMPS и Pascal.

В специализированных системах разработки приложений типа клиент-сервер (данную архитектуру мы рассмотрим позже) среда программирования, кроме того, обычно дополнена коммуникационными средствами (установление и разъединение соединений с серверами БД, обнаружение и обработка возникающих в сети ошибок и. т. д.), средствами разработки пользовательских интерфейсов, средствами проектирования и отладки.

Различают два основных метода использования встроенного SQL: статический и динамический.

При статическом использовании языка (статический SQL) в тексте программы имеются фиксированные по структуре вызовы функций языка SQL, включаемые в выполняемый модуль в процессе компиляции. Параметры запросов (обычно представляют константные значения, с которыми сравниваются значения полей в таблицах), являющиеся переменными языка программирования, позволяют добиться некоторой гибкости статических запросов.

При динамическом использовании языка (динамический SQL) предполагается динамическое построение запроса в форме текстовой строки. Данная строка используется как параметр для функции выполнения SQL-запросов, которая выполняет синтаксический анализ строки запроса и формирует на его основе последовательность команд БД. Динамический метод обычно применяется в случаях, когда в приложении заранее неизвестен вид SQL-вызова.

В результате выборки данных из одной или нескольких, таблиц может быть получено множество записей, называемое представлением. Представление по существу является таблицей, формируемой в результате выполнения запроса, которая существует «виртуально» только до завершения выполнения программы.

Для удобства работы с представлениями в язык SQL введено понятие курсора. Курсор представляет собой своеобразный указатель на набор записей в представлении, обеспечивающий в каждый момент доступ лишь к некоторой небольшой части строк представления. С помощью операторов перемещения курсора по записям можно получить доступ ко всем строкам таблицы.

116 Трехзвенная модель распределенной системы БД

До сих пор мы обсуждали самую простую архитектуру для работы с WWW и простыми бизнес-приложениями - клиент/сервер. Однако эту архитектуру не так-то просто нарастить по мере роста и изменения ваших приложений. В ней также трудно использовать преимущества объектно-ориентированного программирования. Первая проблема недавно нашла отражение в дискуссиях относительно «тонких клиентов». Потребность в тонких клиентах происходит из беспокоящей тенденции в передаче клиенту все больших объемов обработки. Эта проблема проявилась в PowerBuilder и VisualBasic - инструментах, которые прямо вытаскивают данные из базы в GUI, а затем все операции над этими данными проводят в GUI.

Такая тесная привязка интерфейса пользователя к ядру базы данных приводит к появлению программ, которые трудно модифицировать и невозможно масштабировать при увеличении числа пользователей и объема данных. Если у вас есть опыт разработки интерфейсов пользователя, то вы сталкивались с проблемой переработки интерфейса в зависимости от каприза пользователя. Чтобы изолировать последствия такой переработки, проще всего оставить для GUI только одну задачу- действовать в качестве интерфейса пользователя. Такой интерфейс пользователя действительно является тонким клиентом.

Влияние на масштабируемость сказывается и с другой стороны. Когда требуется переработать приложение, чтобы оно могло справляться с возросшим числом пользователей и объемом данных, модификация может быть осуществлена в результате изменений, вносимых в базу данных, в том числе таких, которые состоят в распределении базы данных по нескольким серверам. Навечно привязав свой интерфейс к базе данных, вам приходится делать изменения в этом GUI для решения проблем масштабирования - проблем, связанных исключительно с сервером.

Тонкие клиенты - не единственное сегодняшнее поветрие. Другая тенденция - повторное использование кода. Общий для разных приложений код тяготеет к обработке данных, обычно называемой деловой логикой. Если вся ваша деловая логика располагается в интерфейсе пользователя, то добиться повторного использования кода будет, по меньшей мере, трудно. Решением этих проблем является разбиение приложения на три, а не на две части. Такая архитектура называется трехзвенной.

Сравните двухзвенную архитектуру на рис. 8-1 с трехзвенной архитектурой, показанной на рис. 8-4. Мы добавили промежуточный слой между интерфейсом пользователя и базой данных. Этот новый слой, сервер приложений, заключает в себе логику работы приложения - деловую логику, которая является общей для некоторой области задач. Клиент становится ничем иным, как средством просмотра объектов среднего яруса, а база данных становится хранилищем этих объектов.

Самое главное, что вы выигрываете, - это разделение интерфейса пользователя и базы данных. Теперь вам не нужно встраивать знание базы данных в GUI. Напротив, все сведения о том, как работать с базой данных, могут размещаться в среднем ярусе.

Две главные задачи сервера приложений - это изоляция подключений к базе данных и обеспечение централизованного хранилища для деловой логики. Интерфейс пользователя имеет дело только с отображением и вводом данных, а ядро базы данных занимается только проблемами базы данных. При перемещении обработки данных в центральное место одну и ту же программу сервера приложений могут использовать различные интерфейсы пользователя, и устраняется необходимость писать правила обработки данных всякий раз, когда вы создаете новое приложение.

120 Иерархическая модель представления данных. Ее достоинства и недостатки. Примеры

В иерархической модели связи между данными можно описать с помощью упорядоченного графа (или дерева). Упрощенно представление связей между данными в иерархической модели показано на рис.1. (см. Приложение рис.1.) Для описания структуры (схемы) иерархической БД на некотором языке программирования используется тип данных «дерево». Тип «дерево» схож с типами данных «структура» языков программирования ПЛ/1 и C и «запись» языка Паскаль. В них допускается вложенность типов, каждый из которых находится на некотором уровне. Тип «дерево» является составным. Он включает в себя подтипы («поддеревья»), каждый из которых, в свою очередь, является типом «дерево». Каждый из типов «дерево» состоит из одного «корневого» типа и упорядоченного набора (возможно, пустого) подчиненных типов. Каждый из элементарных типов, включённых в тип «дерево», является простым или составным типом «запись». Простая «запись» состоит из одного типа, например числового, а составная «запись» объединяет некоторую совокупность типов, например, целое, строку символов и указатель (ссылку). Пример типа «дерево» как совокупности типов показан на рис.2. (см. Приложение рис.2.)

Корневым называется тип, который имеет подчиненные типы и сам не является подтипом. Подчинённый тип (подтип) является потомком по отношению к типу, который выступает для него в роли предка (родителя). Потомки одного и того же типа являются близнецами по отношению друг к другу.

B целом тип «дерево» представляет собой иерархически организованный набор типов «запись».

Иерархическая БД, представляет собой упорядоченную совокупность экземпляров данных типа «дерево» (деревьев), содержащих экземпляры типа «запись» (записи). Часто отношения родства между типами переносят на отношения между самими записями. Поля записей хранят собственно числовые или символьные значения, составляющие основное содержание БД. Обход всех элементов иерархической БД обычно производится сверху вниз и слева направо.

В иерархических СУБД может использоваться терминология, отличающаяся от приведенной. Так, в системе IMS понятию «запись» соответствует термин «сегмент», а под «записью БД» понимается вся совокупность записей, относящаяся к одному экземпляру типа «дерево».

Данные в базе с приведенной схемой (рис.2.) могут выглядеть, например, как показано на рис.3. (см. Приложение рис. 3.)

Для организации физического размещения иерархических данных в памяти ЭВМ могут использоваться следующие группы методов:

представление линейным списком с последовательным распределением памяти (адресная арифметика, левосписковые структуры);

представление связными линейными списками (методы, использующие указатели и справочники).

К основным операциям манипулирования иерархически организованными данными относятся следующие:

поиск указанного экземпляра БД;

переход от одного дерева к другому;

переход от одной записи к другой внутри;

вставка новой записи в указанную позицию;

удаление текущей записи и т. д.

B соответствии с определением типа «дерево», можно заключить, что между предками и потомками автоматически поддерживается контроль целостности связей. Основное правило контроля целостности формулируется следующим образом: потомок не может существовать без родителя, а у некоторых родителей может не быть потомков. Механизмы поддержания целостности связей между записями различных деревьев отсутствуют.

K достоинствам иерархической модели данных относятся эффективное использование памяти ЭВМ и неплохие показатели времени выполнения основных операций над данными. Иерархическая модель данных удобна для работы с иерархически упорядоченной информацией. Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями, а также сложность понимания для обычного пользователя. На иерархической модели данных основано сравнительно ограниченное количество СУБД, в числе которых можно назвать зарубежные системы IMS, PC/Focus, Теаm-Up и Data Еdgе, а также отечественные системы Ока, ИНЭС и МИРИС.

Достоинства и недостатки иерархической модели



Достоинствами иерархической модели данных являются следующие.

Простота. Хотя модель использует три информационные конструкции, иерархический принцип соподчиненности понятий является естественным для многих экономических задач (например, организация статистической отчетности).

Минимальный расход памяти. Для задач, допускающих реализацию с помощью любой из трех моделей данных, иерархическая модель позволяет получить представление с минимально требуемой памятью.

Недостатки иерархической модели.

Неуниверсальность. Многие важные варианты взаимосвязи данных невозможно реализовать средствами иерархической модели, или реализация связана с повышением избыточности в базе данных.

Допустимость только навигационного принципа доступа к данным.

Доступ к данным производится только через корневое отношение.

Рис. 2.9. Логическая структура БД библиотечного дела

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

К объектно-ориентированным СУБД относятся POET, Jasmine, Versant, O 2, ODB - Jupiter, Iris, Orion, Postgres.

129 Основные понятия метода проектирования БД сущность – связь. Примеры

Широкое распространение реляционных СУБД и их использование в самых разнообразных приложениях показывает, что реляционная модель данных достаточна для моделирования предметных областей. Однако проектирование реляционной базы данных в терминах отношений на основе механизма нормализации часто представляет собой очень сложный и неудобный для проектировщика процесс. Потребности проектировщиков баз данных в более удобных и мощных средствах моделирования предметной области вызвали к жизни направление семантических моделей данных. В этой лекции рассматривается одна из популярных семантических моделей данных – модель "сущность–связь".
Метод сущность-связь называют также методом "ER-диаграмм": во-первых, ER –аббревиатура от слов Essence (сущность) и Relation (связь), во-вторых, метод основан на использовании диаграмм, называемых соответственно диаграммами ER-экземпляров и диаграммами ER-типа.

Основные понятия метода
Основными понятиями метода сущность-связь являются следующие:

сущность – представляет собой объект, информация о котором хранится в БД. Экземпляры сущности отличаются друг от друга и однозначно идентифицируются. Названиями сущностей являются, как правило, существительные, например: ПРЕПОДАВАТЕЛЬ, ДИСЦИПЛИНА, ГРУППА.

Атрибут сущности – представляет собой свойство сущности. Это понятие аналогично понятию атрибута в отношении. Так, атрибутами сущности ПРЕПОДАВАТЕЛЬ может быть его Фамилия, Должность, Стаж (преподавательский) и т. д.

Ключ сущности – атрибут или набор атрибутов, используемый для идентификации экземпляра сущности. Как видно из определения, понятие ключа сущности аналогично понятию ключа отношения.;

Связь между сущностями. Связь двух или более сущностей - предполагает зависимость между атрибутами этих сущностей. Название связи обычно представляется глаголом. Примерами связей между сущностями являются следующие- ПРЕПОДАВАТЕЛЬ ВДЕТ ДИСЦИПЛИНУ (Иванов ВЕДЕТ "Организацию БД и знаний"), ПРЕПОДАВАТЕЛЬ ПРЕПОДАЕТ В ГРУППЕ (Иванов ПРЕПОДАЕТ В 256 группе);

Степень связи – является характеристикой связи между сущностями, которая может быть следующих видов: 1:1, 1:М, М:1, М:М.;

Класс принадлежности (КП) экземпляров сущности. КП сущности может быть: обязательным и необязательным. Класс принадлежности сущности является обязательным, если все экземпляры этой сущности обязательно участвуют в рассматриваемой связи, в противном случае класс принадлежности сущности является необязательным.

Диаграммы ER-экземпляров;

Диаграммы ER-типа.
Приведенные определения сущности и связи не полностью формализованы, но приемлемы для практики. Следует иметь в виду, что в результате проектирования могут быть получены несколько вариантов одной и той же БД. Так, два разных проектировщика, рассматривая одну и ту же проблему с разных точек зрения, могут получить различные наборы сущностей и связей. При этом оба варианта могут быть рабочими, а выбор лучшего из них будет результатом личных предпочтений.
Диаграммы ER-экземпляров и ER-типа
На начальном этапе проектирования БД выделяются атрибуты, составляющие ключи сущностей.
На основе анализа диаграмм ER-типа формируются отношения проектируемой БД. При этом учитывается степень связи сущностей и класс их принадлежности, которые, в свою очередь, определяются на основе анализа диаграмм ER-экземпляров соответствующих сущностей.
Варьируя классом принадлежности сущностей для каждого из названных типов связи, можно получить несколько вариантов диаграмм ER-типа. Рассмотрим примеры некоторых из них.

Пример проектирования и описания базы данных

При проектировании базы данных с использованием модели сущность-связь выполняются четыре шага:

идентификация представляющих интерес множеств сущностей связей;

идентификация семантической информации в множествах связей, например, является ли некоторое множество связей отображением 1:n;

определение множеств значений и атрибутов;

организация данных в виде отношений сущность/связь и определение первичных ключей.

Будем использовать в качестве примера производственную компанию, рассмотренную в разд. 3.1. Результаты первых двух шагов проектирования базы данных отражены в диаграмме сущность-связь, показанной на рис. 11. Третий шаг состоит в определении множеств значений и атрибутов (см. рис. 2 и 3). На четвертом шаге принимается решение о первичных ключах сущностей и связей, и данные организуются в виде отношений "сущность/связь". Заметим, что для каждого множества сущностей на рис. 11 имеется соответствующее отношение сущность-связь. Мы будем использовать имена множеств сущностей (на уровне 1) как имена соответствующих отношений сущность-связь (на уровне 2), если только это не вызывает путаницы.






Дата публикования: 2015-01-26; Прочитано: 302 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...