Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мультипроцессорная обработка



Мультипроцессорная обработка – это способ организации вычислительного процесса в системах с несколькими процессорами, при котором несколько задач (процессов, потоков) могут одновременно выполняться на разных процессорах системы.

Концепция мультипроцессирования известна с 1970-х годов, но до се­редины 80-х доступных многопроцессорных систем не существовало. Однако к настоящему времени стало обычным включение нескольких процессоров в ар­хитектуру даже персонального компьютера. Более того, многопроцессорность теперь является одним из необходимых требований, которые предъявляются к компьютерам, используемым в качестве центрального сервера более-менее круп­ной сети.

Заметим, что следует различать мультипроцессорную и мультипрограммную обработку. В мультипрограммных системах параллельная работа разных устройств позволяет одновременно вести обработку нескольких программ, но при этом в самом процессоре в каждый момент времени выполняется только одна программа, т.е. несколько задач выполняются попеременно на одном процес­соре, создавая лишь видимость параллельного выполнения. В мультипроцес­сорных же системах несколько задач выполняются действительно одновременно, так как имеется несколько обрабатывающих устройств – процессоров. Конечно, мультипроцессирование вовсе не исключает мультипрограммирования: на каждом из процессоров может попеременно выполняться некоторый закрепленный за дан­ным процессором набор задач.

Усложнение архитектуры вычислительной системы за счет увеличения числа процессоров приводит и к усложнению всех алго­ритмов управления ресурсами. Возрастает число конфликтов по обращению к устройствам ввода-вывода, данным, общей памяти и совместно используемым программам. Необходимо предусмотреть эффективные средства блокировки при доступе к разделяемым информационным структурам ядра. Все эти проблемы должна решать операционная система путем синхронизации процессов, ведения очередей и планирования ресурсов. Более того, сама операционная система должна быть спроектирована так, чтобы уменьшить существующие взаимозависимости между собственными компонентами.

В наши дни становится общепринятым введение в ОС функций поддержки мультипроцессорной обработки данных. Такие функции имеются во всех попу­лярных ОС, таких, как Sun Solaris 2.x, Santa Crus Operations Open Server 3-х, IBM OS/2, Microsoft Windows NT и Novell NetWare, начиная с версии 4.1.

Мультипроцессорные системы можно разделить на два основных типа: симметричные и асимметричные. Причем это свойство может характеризовать как тип архитектуры мультипроцессорной системы, так и способ организации вычислительного процесса в этой системе.

Симметричная архитектура мультипроцессорной системы предполагает одно­родность всех процессоров и единообразие их включения в общую схему мультипроцессорной системы. Традиционные симметричные мультипро­цессорные конфигурации разделяют однубольшую память между всеми процес­сорами. Масштабируемость, или возможность наращивания числа процессоров, в симмет­ричных системах ограничена вследствие того, что все они пользуются одной и той же оперативной памятью и, следовательно, должны располагаться в одном корпусе. Такая конструкция, называемая масштабируемой по вертикали, на прак­тике ограничивает число процессоров до четырех или восьми. В симметричных архитектурах все процессы пользуются одной и той же схемой отображения памяти. Они могут очень быстро обмениваться данными, так что обеспечивается достаточно высокая производительность для тех приложений (например, при работе с базами данных), в которых несколько задач должны ак­тивно взаимодействовать между собой.

В асимметричной архитектуре разные процессоры могут отличаться как своими характеристиками (производительностью, надежностью, системой команд и т.д., вплоть до модели микропроцессора), так и функциональной ролью, которая по­ручается им в системе. Например, одни процессоры могут предназначаться для работы в качестве основных вычислителей, другие – для управления подсисте­мой ввода-вывода, третьи – еще для каких-то особых целей. Такая функциональная неоднородность влечет за со­бой структурные отличия во фрагментах системы, содержащих разные процес­соры системы. Например, они могут отличаться схемами подключения про­цессоров к системной шине, набором периферийных устройств и способами взаимодействия процессоров с устройствами. Масштабирование в асимметричной архитектуре реализуется иначе, чем в сим­метричной. Так как требование единого корпуса отсутствует, система может со­стоять из нескольких устройств, каждое из которых содержит один или несколь­ко процессоров. Это масштабирование по горизонтали. Каждое такое устройство называется кластером, а вся мультипроцессорная система – кластерной.

Другим аспектом мультипроцессорных систем, который может характеризовать­ся симметрией или ее отсутствием, является способ организации вычислительного процесса. Последний, как известно, определяется и реализуется операцион­ной системой.

Асимметричное мультипроцессирование – наиболее простой способ организации вычислительного процесса в системах с несколькими процессора­ми. Этот способ часто называют также “ведущий-ведомый”.

Функционирование системы по принципу “ведущий-ведомый” предполагает вы­деление одного из процессоров в качестве “ведущего”, на котором работает опе­рационная система и который управляет всеми остальными “ведомыми” процес­сорами, т.е. ведущий процессор берет на себя функции распределения задач и ресурсов, а ведомые процессоры работают только как обрабатывающие устрой­ства и никаких действий по организации работы вычислительной системы не выполняют.

Так как операционная система работает только на одном процессоре и функции управления полностью централизованы, то такая операционная система оказы­вается не намного сложнее ОС однопроцессорной системы.

Асимметричная организация вычислительного процесса может быть реализова­на как для симметричной мультипроцессорной архитектуры, в которой все про­цессоры аппаратно неразличимы, так и для несимметричной, для которой харак­терна неоднородность процессоров, их специализация на аппаратном уровне.

В системах с асимметричной архитектурой на роль ведущего процессора может быть назначен наиболее надежный и производительный процессор. Если в набо­ре процессоров имеется специализированный процессор, ориентированный, на­пример, на матричные вычисления, то при планировании процессов операци­онная система, реализующая асимметричное мультипроцессирование, должна учитывать специфику этого процессора. Такая специализация снижает надеж­ность системы в целом, так как процессоры не являются взаимозаменяемыми.

Симметричное мультипроцессирование как способ организации вычислительно­го процесса может быть реализовано в системах только с симметричной мульти­процессорной архитектурой. Напомним, что в таких системах процессоры рабо­тают с общими устройствами и разделяемой основной памятью.

Симметричное мультипроцессирование реализуется общей для всех процес­соров операционной системой. При симметричной организации все процессоры равноправно участвуют и в управлении вычислительным процессом, и в выпол­нении прикладных задач. Например, сигнал от принтера, который распечатывает данные прикладного процесса, выполняемого на некотором про­цессоре, может быть обработан совсем другим процессором. Разные процессоры могут в какой-то момент одновременно обслуживать как разные, так и одинако­вые модули общей операционной системы. Для этого программы операционной системы должны обладать свойством повторной входимости (реентерабельнос­тью). Операционная система при этом полностью децентрализована. Модули ОС выполняются на любом доступном процессоре. Как только процессор завершает выполнение очередной задачи, он передает управление планировщику задач, который выби­рает из общей для всех процессоров системной очереди задачу, которая будет выполняться на данном процессоре следующей. Все ресурсы выделяются для каждой выполняемой задачи по мере возникновения в них потребностей и никак не закрепляются за процессором. При таком подходе все процессоры работают с одной и той же динамически выравниваемой нагрузкой. В решении одной за­дачи могут участвовать сразу несколько процессоров, если она допускает такоераспараллеливание, например путем представления в виде нескольких потоков.

В случае отказа одного из процессоров симметричные системы, как правило, сравнительно просто реконфигурируются, что является их большим преимуще­ством перед плохо реконфигурируемыми асимметричными системами.

Симметричная и асимметричная организация вычислительного процесса в муль­типроцессорной системе не связана напрямую с симметричной или асимметрич­ной архитектурой, она определяется типом операционной системы. Так, в сим­метричных архитектурах вычислительный процесс может быть организован как симметричным образом, так и асимметричным. Однако асимметричная архитек­

тура непременно влечет за собой и асимметричный способ организации вычис­лений.

103 Апаратно-зависимые компоненты ОС

Практически все современные аппаратные платформы имеют некоторый типичный набор средств аппаратной поддержки ОС, в который входят следующие компоненты:

Средства поддержки привилегированного режима обычно основаны на системном регистре процессора, часто называемом “ словом состояния ” машины или процессора. Этот регистр содержит некоторые признаки, определяющие режимы работы процессора, в том числе и признак текущего режима привилегий.

Средства трансляции адресов выполняют операции преобразования виртуальных адресов, которые содержатся в кодах процесса, в адреса физической памяти.

Средства переключения процессов предназначены для быстрого сохранения контекста приостанавливаемого процесса и восстановления контекста процесса, который становится активным. Контекст обычно включает содержимое всех регистров общего назначения процессора, регистра флагов операций (то есть флагов нуля, переноса, переполнения и т.п.), а также тех системных регистров и указателей, которые связаны с отдельным процессом, а не ОС, например указателя на таблицу трансляции адресов процесса.

Система прерываний позволяет компьютеру реагировать на внешние события, синхронизировать выполнение процессов и работу устройств ввода-вывода, быстро переходить с одной программы на другую.

Системный таймер, часто реализуемый в виде быстродействующего регистра-счетчика, необходим ОС для выдержки интервалов времени. В регистр таймера программно загружается значение требуемого интервала в условных единицах, из которого затем автоматически с определенной частотой начинает вычитаться по единице. Частота “тиков” таймера, как правило, тесно связана с частотой тактового генератора процессора.

Средства защиты областей памяти обеспечивают на аппаратном уровне проверку возможности программного кода осуществлять с данными определенной области памяти такие операции, как чтение, запись или выполнение (при передачах управления). Если аппаратура компьютера поддерживает механизм трансляции адресов, то средства защиты областей памяти встраиваются в этот механизм. Функции аппаратуры по защите памяти обычно состоят в сравнении уровней привилегий текущего кода процессора и сегмента памяти, к которому производится обращение.

Объем машинно-зависимых компонентов ОС зависит от того, насколько велики отличия в аппаратных платформах, для которых разрабатывается ОС. Например, ОС, построенная на 32-битовых адресах, для переноса на машину с 16-битовыми адресами должна быть практически переписана заново. Одно из наиболее очевидных отличий – несовпадение системы команд процессоров – преодолевается достаточно просто. Как правило, современная ОС программируется на языке высокого уровня, а затем соответствующим компилятором вырабатывается код для конкретного типа процессора. Однако во многих случаях различия в организации аппаратуры компьютера лежат гораздо глубже и преодолеть их таким образом не удается. Например, однопроцессорный и двухпроцессорный компьютеры требуют применения в ОС совершенно разных алгоритмов распределения процессорного времени. Аналогично, отсутствие аппаратной поддержки виртуальной памяти приводит к принципиальному различию в реализации подсистемы управления памятью. В таких случаях разработчикам не удается обойтись без внесения в код ОС специфики аппаратной платформы, для которой эта ОС предназначается.

Таким образом, любая ОС для решения своих задач взаимодействует с аппаратными средствами компьютера, а именно: средствами поддержки привилегированного режима и трансляции адресов, средствами переключения процессов и защиты областей памяти, системой прерываний и системным таймером. Это делает ОС машинно-зависимой, привязанной к определенной аппаратной платформе.

Операционная система называется переносимой ОС (portable), или мобильной, если ее код может быть сравнительно легко перенесен с процессора одного типа на процессор другого типа и с аппаратной платформы одного типа на аппаратную платформу другого типа.

Несмотря на то, что зачастую ОС описываются либо как переносимые, либо как непереносимые, мобильность – это не бинарное состояние, а понятие степени. Вопрос на самом деле не только и не столько в том, может ли быть система перенесена, а в том, насколько легко можно это сделать. Ведь если для переноса ОС с одного компьютера на другой необходимо переписать заново практически все ее модули, такая система не будет считаться переносимой, хотя принципиально ее можно назвать и так. Для того чтобы обеспечить свойство мобильности ОС, разработчик должен следовать установленным правилам.

1) Подавляющая часть кода должна быть написана на языке, трансляторы которого имеются на всех машинах, куда предполагается переносить систему. Такими языками, например, являются стандартизированные языки высокого уровня. Большинство переносимых ОС написано на языке C, который имеет много особенностей, полезных для разработки кодов ОС, и компиляторы которого широко доступны. Языки низкого уровня не подходят для решения подобных задач. Так, программа, написанная на ассемблере, является переносимой только в том случае, когда перенос ОС предполагается на компьютер, обладающий той же системой команд. В остальных случаях ассемблер используется только для тех непереносимых частей ОС, которые должны непосредственно взаимодействовать с аппаратурой (например, для обработчика прерываний), или частей, требующих максимальной производительности(например, для целочисленной арифметики повышенной точности).

2) Объем машинно-зависимых частей кода, непосредственно взаимодействующих с аппаратными средствами, должен быть по возможности минимизирован. Всегда следует избегать прямого манипулирования регистрами и другими аппаратными средствами процессора. Для уменьшения аппаратной зависимости разработчики ОС должны также исключить возможность использования по умолчанию стандартных конфигураций аппаратуры или их характеристик. Аппаратно-зависимые параметры можно “спрятать” в

программно-задаваемые пользователем данные абстрактного типа. Для осуществления всех необходимых действий по управлению аппаратурой, представленной этими параметрами, должен быть написан набор аппаратно-зависимых функций. Каждый раз, когда какому-либо модулю ОС требуется выполнить некоторое действие, связанное с аппаратурой, он манипулирует абстрактными данными, используя соответствующую функцию из имеющегося набора. Когда ОС переносится, то соответственно изменяются только эти данные и функции, которые ими манипулируют.

3) Аппаратно-зависимый код должен быть надежно изолирован в нескольких модулях, а не быть распределен по системе. Изоляции подлежат все части ОС, которые отражают специфику как процессора в отдельности, так и используемой аппаратной платформы в целом. Низкоуровневые компоненты ОС, имеющие доступ к процессорно-зависимым структурам данных и регистрам, должны быть в обязательном порядке оформлены в виде компактных логически обособленных модулей, которые могут быть заменены аналогичными по выполняемым функциям модулями для других процессоров. Для снятия платформенной зависимости, возникающей из-за различий между компьютерами разных производителей, построенными на одном и том же процессоре, должен быть введен хорошо локализованный программный слой машинно-зависимых функций с четко оговоренным межслойным интерфейсом.

В идеальном случае слой машинно-зависимых компонентов ядра полностью экранирует остальную часть ОС от конкретных деталей аппаратной платформы или тех платформ, которые поддерживает данная ОС. В результате таких действий происходит как бы подмена реальной аппаратуры некой унифицированной расширенной машиной, одинаковой с точки зрения пользователя для всех возможных вариантов аппаратной платформы. Все слои, лежащие выше слоя машинно-зависимых компонентов, могут быть написаны для управления именно этой виртуальной аппаратурой. Таким образом, у разработчиков появляется возможность создавать один вариант машинно-независимой части ОС (включая компоненты ядра, утилиты, системные обрабатывающие программы) для всего набора поддерживаемых аппаратных платформ.

109Логическая и физическая организация файловых систем.





Дата публикования: 2015-01-26; Прочитано: 2945 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...