Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Выпуклость функции в точке. Достаточное условие



Определение: Функция f(x) называется выпуклой вверх (вниз) в точке xo, если найдется такая окрестность U(xo), что для всех точек из этой окрестности U(xo) график функции f(x) лежит не выше (не ниже) касательной, проведенной в точке xo.

Замечание: Говорить о выпуклости в точке можно только если функция дифференцируема в этой точке.

Контрольный пример: . 0 - ни точка выпуклости вверх, ни точка выпуклости вниз, ни точка перегиба, потому что в любой окрестности U(0) есть точки в которых функция выпукла вверх и вниз.

Теорема: (Достаточное условие выпуклости вверх (вниз)).

Если функция f в точке xo имеет непрерывную вторую производную , и при этом <0 (>0), то f выпукла в вверх (вниз) в точке xo.

Доказательство:

Т.к. функция f имеет непрерывную вторую производную , то эта производная определена в некоторой окрестности . Разложим функцию f по формуле Тéйлора с остаточным членом в форме Пеано:

.

Причем функция является графиком касательной к функции f в точке . Поэтому если >0, то f(x)< (x) в окрестности (т.к. ε(x)→0, при x→0), а если >0, то f(x)> (x) в .

Билет 21

Точка перегиба. Достаточные условия. Общая теорема о точках перегиба и экстремума.

Определение.

Точка называется точкой перегиба, если в этой точке график переходит через сторону касательной (разные выпуклости слева и справа).

Замечание.

Точка перегиба существует только если . Пример

Теорема 1 (Достаточное условие существования точки перегиба).

Если функция имеет непрерывной в точке , =0 и , то точка перегиба.

Доказательство:

В этом случае: , (формула Тейлора), или .

В силу непрерывности в и того факта, что сохраняет знак в некоторой окрестности точки . С другой стороны, множитель меняет знак при переходе через , а вместе с ним и величина (равная превышению точки кривой над касательной в ) меняет знак при переходе через .

Теорема доказана.

Теорема 2 (Общая теорема о точках перегиба и экстремума.)

Пусть функция обладает следующими свойствами:





Дата публикования: 2015-01-10; Прочитано: 290 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...