Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Определение неопределенного интеграла



Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x)подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

1.
Производная результата интегрирования равна подынтегральной функции.

2.
Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. , где k – произвольная константа.
Коэффициент можно выносить за знак неопределенного интеграла.

4.
Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

· первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;

· второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Таблица первообразных.

Свойства неопределенного интеграла позволяют по известному дифференциалу функции найти ее первообразную. Таким образом, используя равенства и можно из таблицы производных основных элементарных функций составить таблицу первообразных.

Напомним таблицу производных, запишем ее еще в виде дифференциалов.

Для примера найдем неопределенный интеграл степенной функции .

Используем таблицу дифференциалов , следовательно, по свойствам неопределенного интеграла имеем . Поэтому или в другой записи

Найдем множество первообразных степенной функции при p = -1. Имеем . Обращаемся к таблице дифференциалов для натурального логарифма , следовательно, . Поэтому .

Надеюсь, принцип Вы уловили.

Таблица первообразных (неопределенных интегралов).

Формулы из левого столбца таблицы называют основными первообразными. Формулы из правого столбца основными не являются, но очень часто используются при нахождении неопределенных интегралов. Их можно проверить дифференцированием.





Дата публикования: 2015-01-10; Прочитано: 253 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...