Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Производная сложной и обратной функций



1. Производная сложной ф-ции.

Пусть переменная есть функция от переменной переменная в свою очередь есть функция от независимой переменной ,т.е. задана сложная функция .

Теорема. Если - дифференцируемые функции от своих аргументов, то производная сложной функции существует и равна производной данной функции существует по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по независимой переменной ,т.е. .

Дадим независимой переменной приращение . Тогда функции соответственно получат приглашение

Предположим, что Тогда в силу дифференцируемости функции можно записать

Где

На основании теоремы о связи бесконечно малых с пределами функций , откуда

Это равенство будет справедливо и при , если полагать, что (т.е. доопределит таким образом функцию при

Разделив обе части равенства: на

.

Т.к. по условию функция

Поэтому, переходя к пределу при в равенстве получим

.

Замечание. Если ограничиться случаями, что при , доказательство теоремы можно провести проще, исходя из очевидного равенства

и переходя в нём к пределу при ч.т.д.





Дата публикования: 2015-01-10; Прочитано: 266 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...