Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Использование лазера



5.1. Лазерный луч в роли сверла. Сверление отверстий в часовых
камнях — с этого начиналась трудовая деятельность лазера. Речь идет о
рубиновых камнях, которые используются в часах в качестве подшипников скольжения. При изготовлении таких подшипников требуется высверлить в рубине — материале весьма твердом и в то же время хрупком — отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с использованием сверл, изготовленных из тонкой рояльной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступательных перемещений. Для сверления одного камня требовалось до 10-15 мин.

Начиная с 1964 г. малопроизводительное механическое сверление
часовых камней стало повсеместно заменяться лазерным сверлением.
Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие — он его пробивает, вызывая
интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме - камень в секунду. Это в тысячу раз выше
производительности механического сверления!

Вскоре после своего появления на свет лазер получил следующее
задание, с которым справился столь же успешно, — сверление (пробивание) отверстий в алмазных фильерах. Для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью, — ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего
протягивать тонкую проволоку сквозь отверстие в алмазе — сквозь так
называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно — для механического сверления одного отверстия в алмазной фильере требуется до десяти часов. Зато, как
оказалось, совсем нетрудно пробить это отверстие серией из нескольких
мощных лазерных импульсов.

Сегодня лазерное сверление широко применяется не только для особо
твердых материалов, но и для материалов, отличающихся повышенной
хрупкостью. Лазерное сверло оказалось не только мощным, но и весьма
деликатным «инструментом». Пример: применение лазера при сверлении
отверстий в подложках микросхем, изготавливаемых из глиноземной
керамики. Керамика необычайно хрупка. По этой причине механическое
сверление отверстий в подложке микросхемы производили, как правило, на «сыром» материале. Обжигали керамику уже после сверления. При этом происходила некоторая деформация изделия, искажалось взаимное
расположение высверленных отверстий. Проблема была решена с
появлением лазерных сверл. Используя их, можно работать с керамическими подложками, которые уже прошли обжиг. С помощью лазеров пробивают в керамике очень тонкие отверстия — диаметром всего 10 мкм. Механическим сверлением такие отверстия получить нельзя.

То, что сверление — призвание лазера, ни у кого не вызывало сомнений.
Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах.

Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя,

Эти аккуратные отверстия диаметром 0,3 мм пробиты в пластинке из глиноземной

5.2. Лазерная резка и сварка. Лазерным лучом можно резать решительно все: ткань, бумагу, дерево, фанеру, резину; пластмассу, керамику, листовой асбест, стекло, листы металла. При этом можно получать аккуратные разрезы по сложным профилям. При резке возгорающихся материалов место разреза обдувают струёй инертного газа; в результате получается гладкий, необожженный край среза. для резки обычно используют непрерывно генерирующие лазеры. Нужная мощность излучения зависит от материала и толщины заготовки. Например, для резки досок толщиной 5 см применялся С02-лазер мощностью 200 Вт. Ширина разреза составляла всего 0,7 мм; опилок, естественно, не было.

Для резки металлов нужны лазеры мощностью в несколько киловатт. Требуемую мощность можно снизить, применяя метод газолазерной резки - когда одновременно с лазерным лучом на разрезаемую поверхность направляется сильная струя кислорода. При горении металла в кислородной струе (за счет происходящих в этой струе реакций окисления металла) выделяется значительная энергия; в результате может использоваться лазерное излучение мощностью всего 100-500 Вт. Кроме того, струя кислорода сдувает и уносит из зоны разрезания расплав и продукты сгорания металла.

Первый пример такого рода резки лазерный раскрой тканей на ткацкой фабрике. Установка включает С02-лазер мощностью 100 Вт, систему фокусировки и перемещения лазерного луча, ЭВМ, устройство для натяжения и перемещения ткани. В процессе раскроя луч перемещается по поверхности ткани со скоростью 1 м/с. диаметр сфокусированного светового пятна равен 0,2 мм. Перемещениями луча и самой ткани управляет ЭВМ. Установка позволяет, например, в течение часа раскроить материал для 50 костюмов. Раскрой выполняется не только быстро, но и весьма точно; при этом края разреза оказываются гладкими и упрочненными. Второй пример автоматизированное разрезание листов алюминия, стали, титана в авиационной промышленности. Так, С02-лазер мощностью 3 кВт разрезает лист титана толщиной 5 мм со скоростью 5 см/с. Применяя кислородную струю, получают примерно тот же результат при мощности излучения 100- 300 Вт.

В развитии лазерной сварки выделяют два этапа. Вначале развивалась точечная сварка на основе импульсных лазеров на рубине и на стекле с неодимом. С появлением мощных С02-лазе-ров и лазеров на гранате с неодимом, дающих непрерывное излучение или последовательность часто повторяющихся импульсов, стала развиваться шовная сварка.

Примеры точечной лазерной сварки: соединение никелевого контакта с зажимом из никелевого сплава на основании транзистора, приваривание тонких медных проводов друг к другу или к зажимам, взаимное соединение микроэлектронных компонентов. Шовная лазерная сварка непрерывным излучением мощностью около 100 Вт применяется для герметизации корпусов приборов, приваривания наконечников к лопастям газовых турбин и кромок из закаленной стали к полотнам металлорежущих пил и т. д. С помощью киловаттных лазеров производят автоматизированную шовную сварку кузовов автомобилей, корпусов судов, труб газопроводов и т.д. для сварки деталей из стекла используются лазеры мощностью 100 Вт, для сварки кварца — мощностью до 300 Вт. Лазерная сварка успешно конкурирует с известными способами сварки, например с электродуговой и сваркой электронным лучом. Она обладает весомыми преимуществами. При лазерной сварке нет контакта со свариваемым образцом, а значит, нет опасности загрязнения его какими-либо примесями. В отличие от электронно-лучевой сварки, для которой нужен вакуум, лазерная сварка производится в обычных условиях. Она позволяет производить быстро и с высокой точностью проплавление локально: в данной точке или вдоль данной линии. Зона, подвергающаяся тепловому воздействию, имеет очень малые размеры.

Это важно, в частности, в тех случаях, когда сварка выполняется в непосредственной близости от элементов, чувствительных к нагреву.

На рисунке изображён процесс вырезания квадратных отверстий в листе нержавеющей стали толщиной 0,5 мм с помощью С02-лазера. Скорость
резания примерно 2 м/мин. Если длина стороны одного отверстия равна 10 мм, то за 1 мин лазерный луч может вырезать до 5 10 отверстий.

При газолазерной резке луч работает совместно с сильной струёй кислорода. Место разреза подвергается

5.3. Лазерный луч в роли хирургического скальпеля. Свойством лазерного луча сверлить и сваривать различные материалы заинтересовались не только инженеры, но и медики. Представьте себе операционную, где рядом с операционным столом находится С02-лазер. Излучение лазера поступает в шарнирный световод — систему полых раздвигающихся трубок, внутри которых свет распространяется, отражаясь от зеркал. По световоду излучение попадает в выходную трубку, которую держит в своей руке хирург. Он может перемещать ее в пространстве, свободно поворачивая в разных направлениях и тем самым посылая лазерный луч в нужное место. На конце выходной трубки есть маленькая указка; она служит для наведения луча — ведь сам луч невидим. Луч фокусируется в точке, которая находится на расстоянии 3-5 мм от конца указки. Это и есть лазерный хирургический скальпель.
В фокусе лазерного луча концентрируется энергия, достаточная для того, чтобы быстро нагреть и испарить биологическую ткань. Перемещая «лазерный скальпель», хирург рассекает ткань. Его работа отличается виртуозностью: вот он почти неуловимым движением руки приблизил конец указки к рассекаемой ткани, а вот приподнял, отодвинул его подальше; указка быстро и равномерно перемещается вдоль линии разреза, и вдруг ее движение слегка замедляется. Глубина разреза зависит от скорости резания и от степени кровенаполнения ткани. В среднем она составляет 2-3 мм. Часто рассечение тканей выполняют не в один, а в несколько приемов, рассекая как бы послойно. В отличие от обычного скальпеля, лазерный скальпель не только рассекает ткани, но может также сшивать края разреза, иными словами, может производить биологическую сварку.

Рассечение производят сфокусированным излучением (хирург должен держать выходную трубку на таком расстоянии от ткани, чтобы точка, в которой фокусируются лучи, оказалась на поверхности ткани). При мощности излучения 20 Вт и диаметре сфокусированного светового пятна 1 мм достигается интенсивность (плотность мощности) 2,5 кВт/см2. Излучение проникает в ткань на глубину около 50 мкм. Следовательно, объемная плотность мощности, идущая на нагрев ткани, достигает 500 кВт/см3. для биологических тканей это очень много. Происходит их быстрое разогревание и испарение — налицо эффект рассечения ткани лазерным лучом. Если же луч расфокусировать (для чего достаточно немного отодвинуть конец выходной трубки от поверхности ткани) и тем самым снизить интенсивность, скажем, до 25 Вт/см2, то ткань испаряться не будет, а будет происходить поверхностная коагуляция («заваривание»). Вот этот-то процесс и используют для сшивания разрезанной ткани. Биологическая сварка осуществляется за счет коагуляции жидкости, содержащейся в рассекаемых стенках оперируемого органа и специально выдавливаемой в промежуток между соединяемыми участками ткани.

Лазерный скальпель удивительный инструмент. У него есть много несомненных достоинств. Одно из них — возможность выполнения не только рассечения, но и сшивания тканей. Рассмотрим другие достоинства.

Лазерный луч делает относительно бескровный разрез, так как одновременно с рассечением ткани коагулирует края раны, «заваривая» встречающиеся на пути разреза кровеносные сосуды. Правда, сосуды должны быть не слишком крупными; крупные сосуды необходимо предварительно перекрыть специальными зажимами. В силу своей прозрачности лазерный луч позволяет хирургу хорошо видеть оперируемый участок. Лезвие обычного скальпеля всегда в какой-то

мере загораживает хирургу рабочее поле. Лазерный луч рассекает ткань как бы на расстоянии, не оказывая на нее механического давления. В отличие от операции обычным скальпелем, хирург в данном случае может не придерживать ткань рукой или инструментом. Лазерный скальпель обеспечивает абсолютную стерильность - ведь с тканью взаимодействует здесь только излучение. Луч лазера действует локально; испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются при этом значительно меньше, чем при использовании обычного скальпеля. Как показала клиническая практика, рана от лазерного скальпеля относительно быстро заживляется.

До появления лазеров поиски методов лечения отслоения сетчатки привели к следующему. Нужно закрыть разрыв сетчатки, но ведь она находится внутри глаза. Предложили способ, состоящий в том, что до больного места добирались с тыльной стороны глаза. Для чего рассекали веки и вытаскивали глазное яблоко наружу. Оно висело только на нервных волокнах. Затем через внешнюю оболочку осуществляли термокоагуляцню, при помощи которой добивались рубцового сращения краев разрыва с прилегающими тканями. Очевидно, что такая сложная операция требует, во-первых, виртуозного мастерства хирурга и, во-вторых, что также очень важно, решимости больного пойти на такой шаг.

С появлением лазеров были начаты исследования по их использованию для лечения отслоения сетчатки. Эти работы проводились в институте имени Г. Гельмгольца в Москве и в клинике имени В. П. Филатова в Одессе. Метод лечения был выбран необычный. Для проникновения к больному месту уже не надо производить разрез века и вытаскивать глазное яблоко. для этого был использован прозрачный хрусталик. Именно через него было предложено проводить операцию. Для технической реализации операции был разработан прибор, называемый офтальмокоагулятор марки ОК-1. Прибор состоит из основания, на котором размещены источники питания и электрическая часть аппаратуры с органами управления. На основании на специальном шланге с помощью гибкого соединения подвешена излучающая головка с рубиновым лазером. На одной оптической оси с лазером располагается система прицеливания, которая позволяет через зрачок тщательно исследовать глазное дно, найти пораженное место и навести на него (прицелить) луч лазера. Для этого служат две рукоятки, находящиеся в руках хирурга. Вспышка обеспечивается нажатием кнопки, расположенной на одной из рукояток. Выдвигающаяся шторка предохраняет глаза хирурга во время вспышки. Для удобства работы врача-оператора и обслуживающего персонала прибор снабжен световой и звуковой сигнализацией. Энергия импульсов регулируется от 0,02 до 0,1 дж. Сама техника операции состоит в следующем. Сначала врач с помощью оптического визира исследует глазное дно больного и, определив границы заболевшего участка, рассчитывает необходимое количество вспышек и потребную энергию каждой вспышки. Затем, следуя по границам заболевшего участка, производит их облучение. Вся операция напоминает сварку металла точечным методом.

5.4. Лазерное оружие. В середине 80-х годов был получен ряд сообщений о том, что на американских полигонах было испытано несколько образцов лазерного оружия, часть из которого была изготовлена в виде пистолета, часть—в виде ружья. В сообщениях подчеркивалось, что оно было создано для борьбы с живой силой противника на поле боя. Действие оружия основано на использовании большой пиковой мощности лазера. Для чего применялся твердотельный (рубиновый или на стекле с неодимом) лазер с модуляцией добротности. В результате длительность импульса составляла всего i0 с, что при использовании энергии в 1 Дж приводило к мощности в 10 Вт. В первую очередь действие такого оружия, по замыслам создателей, должно состоять в поражении глаз, вызывая в них обратимые или необратимые процессы. Предположения основаны на том, что, попадая на хрусталик человеческого глаза, лазерное излучение не должно поражать сам хрусталик, так как он прозрачен для этого излучения. Но хрусталик, как всякая оптическая система, фокусирует излучение в очень маленькое пятно на сетчатке. В этом пятне плотность энергии возрастает настолько, что приводит к кровоизлиянию. Человек либо не успевает моргнуть настолько короткой является вспышка, либо даже не видит излучение если оно на волне 1,06 мкм. Но зрение теряется мгновенно. Образцы такого оружия представлены на рисунке ниже. В качестве источника излучения используется лазер на рубине, помещенный внутри съемного патрона. В этом же патроне находится источник возбуждения, представляющий собой химический элемент, питаемый от батареи. На рисунке показан патрон отдельно от пистолета. Управление таким оружием максимально приближено к обычному оружию. Оно наводится на объект поражения, нажимается спусковой курок, чем подается импульс от батареи на химический элемент, который дает питание на рубиновый стержень. Излучаемая энергия выбрасывается в сторону цели. Действие показанного на рисунке ружья аналогично. Разработчики считают, что для поражения органов зрения нет необходимости наведения луча точно в глаз противника. Достаточно облучить голову или весь корпус человека. Но если он будет расположен лицом в сторону источника излучения, то поражение органов зрения обеспечено. Механизм воздействия лазерного излучения на сетчатку и хрусталик подробно рассмотрен в предыдущем материале и здесь нет надобности повторяться. В сообщении отмечается, что даже если объект поражения находится к источнику излучения под некоторым углом, все же он может потерять зрение. С появлением лазеров на С0 2, работающих в непрерывном режиме, работы по созданию наземного оружия были форсированы. Были созданы лазерные «пушки». Если первые пистолеты и ружья предназначались в основном против человека и только в отдельных случаях для поджога легко воспламеняющихся материалов, то лазерные пушки предполагали, в основном, борьбу с техникой.

В печати сообщалось, что для повышения интереса Пентагона к лазерам американские инженеры выполнили следующий эксперимент. Создали лазерную пушку для борьбы с низколетящими объектами. Затем запустили модель беспилотного самолета, который на малой высоте прошел над позицией, где размещалась эта пушка. На глазах наблюдавших была отрезана часть плоскости беспилотного самолета. Самого луча никто не видел, но самолет был сбит. В опубликованных материалах, носящих рекламный характер, ничего не говорится о мощности излучения пушки, о высоте, на которой пролетел самолет, о материале, из которого были сделаны плоскости самолета, а также о покраске крыла самолета. После этого эксперимента, как сообщается, работы по созданию лазерного оружия развернулись с новой силой.

Помимо использования так называемого прямого воздействия лазерного излучения на объекты поражения, высокая направленность лазерного излучения применяется за рубежом и для создания лазерных имитаторов стрельбы и тренажеров. Использование лазеров для тренировки стрелков и наводчиков танковых пушек обосновывают тем, что лазер, имея малую расходимость пучка, повышает реальность имитации попадания в цель, обеспечивает «безопасность» стрельбы, дает возможность проводить тренировки в любое время суток и года. В сообщении делают вывод, что лазерные имитаторы, которыми предполагают оснастить танковые подразделения, позволяют разыгрывать танковые бои в условиях, максимально приближенных к боевым.

Заключение

Сегодня трудно даже перечислить всевозможные применения лазеров в науке и технике. Лазеры используются в современной измерительной технике — для оптической локации, в геодезии, для сверхточных измерений расстояний, линейных и угловых скоростей, ускорений. Всё шире внедряются в практику лазерные методы контроля за состоянием атмосферы (степень и характер её загрязнённости), качеством различных изделий, наличием в тех или иных деталях высоких механических напряжений или внутренних дефектов. Развиваются системы лазерной связи (наземные, подводные, космические). Лазерное излучение начинают использовать и в современных вычислительных комплексах — для хранения, поиска, передачи и обработки информации. Накоплен большой материал по эффективному применению лазеров в медицине: созданы лазерные установки для выполнен для самых различных хирургических операций, включая операции на человеческом глазе. Наиболее широко лазеры используются для обработки материалов. Мощные лазеры используются в таких энергоёмких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, направление и легирование крупногабаритных деталей, очистка зданий от поверхностных загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электронно-лучевой сварке, а это очень важно в конвейерном производстве. Лазерным лучом делают на различных поверхностях, ставят клейма, зачищают провода от изоляции. И всякий раз лазерный луч применяется там, где требуется особо “тонкая” работа, где механические средства обработки оказываются грубыми или попросту непригодными.

Одно из наиболее эффективных применений лазера — при глазных операциях. Оказалось, что лазер идеальной точностью сообщает как раз то количество энергии, которое необходимо, чтобы отслоившуюся сетчатку к глазному дну.

Модулированные лазерные пучки эквивалентны огромному числу каналов радиосвязи, и влияние, которое они окажут на развитие техники связи, должно быть колоссальным.

Лазерный пучок используется для точного измерения величены. Отражая лазерный пучок от зеркала, помещённого на Луне, можно получать информацию о флуктуациях расстояния от земли до Луны, которая имеет важное значение для геофизики Земли и Луны.

Очень перспективно применение лазерного луча для связи, особенно в космическом пространстве, где нет поглощающих свет облаков.

Лазеры позволили осуществить светолокатор, с помощью которого расстояние до предметов измеряется с точностью до нескольких миллиметров. Такая точность недоступна для радиолокаторов.

Возбуждая лазерным излучением атомы или молекулы, можно вызвать между ними химические реакции, которые в обычных условиях не идут.

Перспективно использование мощных лазерных лучей для осуществления управляемой термоядерной реакции.

Список использованных источников:

1. Блудов М.И. ”Беседы по физике”. Москва «Просвещение»1992 год.

2.Гинсбург Физике и Астрофизике”. Москва «Просвещение» ь1985 год.

3.МякишевГ.Я., Буховцев Б.Б. «Физика» Москва «Просвещение» 1991 год.

4.Поль Р.В. «Оптика и атомная физика». Москва «Наука» 1966 год.

5.Триг Дж. “Физика 20 века: ключевые эксперименты”. Москва издательство «Мир» 1978 год.

6.Элементарный учебник физики” Под редакцией академика Г.С. Ландсберга. Москва том 3, 1986 год.

ТЕМА: МЕМБРАННАЯ ТЕХНОЛОГИЯ

Содержание

1. Введение

2. История развития мембранных технологий

3. Мембранные технологии - авангардное направление
науки и техники XXI века

4. Мембранные процессы, применяемые для очистки воды

5. Заключение

6. Список литературы





Дата публикования: 2015-01-04; Прочитано: 536 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...