Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Плоские железобетонные перекрытия



Нужно знать

• Расчет изгибаемых элементов по нормальным сечениям

• счет изгибаемых элементов по наклонным сечениям

• Усилие распора

• Расчет железобетонных элементов на отрыв

• Возможные перемещения механической системы

• Работа силы на возможном перемещении

• Грузовая площадь

• Расчет железобетонных плит на продавливание

§ 9.1. Классификация плоских перекрытий

Плоские железобетонные перекрытия являются наиболее распространенными элементами различных зданий и сооружений. Несмотря на особенности в конструкции сооружения, все плоские перекрытия могут быть приведены к двум основным типам: балочным и безбалочным. Балочные перекрытия включают в себя балки, идущие в одном или двух направлениях, и опирающиеся на них плиты. В безбалочных балки отсутствуют, а плиты этих перекрытий опираются непосредственно на колонны, имеющие в своей верхней части уширения — капители. В зависимости от способа возведения перекрытия могут быть сборными, монолитными и сборно-монолитными. В настоящее время применяют преимущественно сборные и сборно-монолитные перекрытия, отличающиеся высокой индустриальностью. Монолитные перекрытия применяются реже, главным образом, в зданиях, возводимых по индивидуальным проектам и т. п.

В последние годы находят все более широкое применение монолитные железобетонные перекрытия с использованием профилированного металлического настила, который выполняет функции опалубки и рабочей арматуры. Такие конструкции целесообразно применять в зданиях с нетиповой сеткой колонн, при реконструкции и замене перекрытий. Применение профнастила в качестве арматуры и опалубки снижает трудоемкость работ, сокращает сроки строительства, снижает высоту и массу перекрытия.

Выбор типа конструкций перекрытия производится с учетом назначения сооружения, состояния производственной базы, экономики и т. п.

§ 9.2. Балочные сборные перекрытия

В состав балочного сборного перекрытия входят панели (плиты) и поддерживающие их балки, называемые ригелями. Ригели могут опираться на колонны (в зданиях с полным каркасом) или на внутренние колонны и наружные несущие стены (в зданиях с неполным каркасом) (рис. 9.1, а). Проектирование перекрытия включает в себя компоновку конструктивной схемы, расчет панелей, ригелей, узлов сопряжения их с колоннами, конструирование и т. п.

Рис. 9.1. Конструктивные схемы сборных балочных перекрытий:

1 — панели перекрытия; 2 — ригели; 3 — колонны

■ Компоновка конструктивной схемы перекрытия. Компоновка состоит из выбора сетки колонн, направления ригелей, типа и ширины панелей. Это делается на основании соображений технологического характера (назначения здания — производственное, жилое, общественное), значений нагрузки, обеспечения пространственной жесткости и требований экономики. При выборе сетки колонн должны соблюдаться требования типизации и унификации.

Направление ригелей может быть продольным (вдоль здания) (рис. 9.1, б) и поперечным (рис. 9.1, в). Устройство ригелей поперек здания обеспечивает его повышенную пространственную жесткость. Такое расположение целесообразно в зданиях с большими оконными проемами в продольных несущих стенах, поскольку в этих случаях на оконные перемычки не будет передаваться нагрузка от панелей перекрытия. Продольное расположение ригелей в вытянутых в плане зданиях позволяет сократить число монтажных единиц, способствует улучшению освещенности помещений и т. п.

Для выбора конструктивной схемы перекрытия разрабатывают несколько вариантов таких схем и на основании технико-экономического сравнения принимают наиболее экономичный. Наибольший расход бетона в перекрытии (около 65%) приходится на панели, поэтому разработка их рациональных решений имеет особо важное значение. Это достигается прежде всего за счет удаления возможно большего количества бетона из растянутой зоны с сохранением вертикальных ребер, обеспечивающих прочность и жесткость элемента, а также совершенствованием технологии изготовления конструкции и т. п.

■ Расчет и конструирование панелей. По форме поперечного сечения различают ребристые, многопустотные и сплошные панели.

● Ребристые панели применяют преимущественно в промышленных зданиях. Ширина панелей 1,0...1,8 м через 0,1 м, высота сечения панелей 25...35 см (рис. 9.2, а).

● Многопустотные панели, имеющие гладкие потолочные поверхности, применяют главным образом в гражданском строительстве. Наибольшее распространение получили панели с круглыми пустотами (рис. 9.2, б) шириной 1,4...2,4 м через 0,1 м, высотой сечения 20...24 см. Панели с овальными пустотами (рис. 9.2, б), несмотря на лучшие показатели по расходу материалов, менее технологичны в изготовлении и в последнее время применяются редко.

● Сплошные панели могут быть однослойные (рис. 9.2, г) и двухслойные с верхним слоем из легкого бетона; последние обладают высокими теплоизоляционными свойствами, малой звукопроводностью и применяются в чердачных перекрытиях.

Рис. 9.2. Конструкции сборных панелей перекрытия:

1 — напрягаемая арматура; 2 — расчетное сечение

Ширину плит при заданном типе и пролете назначают с учетом возможностей подъемно-транспортного оборудования таким образом, чтобы масса плиты не превышала 1,5; 3; 5 т.

Все типы панелей с точки зрения статического расчета представляют собой однопролетную балку, загруженную равномерно распределенной нагрузкой, максимальные усилия в которой будут

где q=(g+ v)b'f — полная нагрузка на 1 м плиты; g — постоянная нагрузка, кН/м2; v — временная нагрузка, кН/м2; b′f—ширина панели; l0 — расчетный пролет, равный расстоянию между линиями действия опорных реакций.

Высота сечения предварительно напряженных панелей (1/20...1/30)l0.

После установления размеров сечения плиты, задавшись классом рабочей арматуры и бетона, выписывают их расчетные характеристики; затем производят расчет прочности плиты по нормальным и наклонным сечениям. При расчете по нормальным сечениям для ребристой плиты вводят эквивалентное тавровое сечение (см. рис. 9.2, а), а для многопустотной — двутавровое (см. рис. 9.2, б). Расчетную ширину сечений принимают равной суммарной толщине всех ребер. В ребристых панелях производят также расчет прочности верхней полки на местный изгиб. В этом случае при отсутствии поперечных ребер из полки плиты мысленно выделяют полосу шириной 100 см (см. рис. 9.2, а), расчет которой производят как частично защемленной по концам балки пролетом l=b'f—b на действие пролетного и опорного моментов M=ql2/11. Далее выполняют расчет прогибов, трещиностойкости и проверку прочности плиты на монтажные нагрузки.

Класс бетона панелей В15...В25. Армируют панели сварными каркасами и сетками из горячекатаной арматуры периодического профиля и обыкновенной проволоки. Рабочая продольная арматура панелей без предварительного напряжения — класса A-III, предварительно напряженных — высокопрочная стержневая и канатная К-7. Сварные сетки плит укладывают в полках, каркасы — в ребрах. Монтажные петли из арматуры класса A-I закладывают по четырем углам и приваривают к основной арматуре. Швы между панелями заполняют бетоном. Длину опирания панелей на кирпичные стены определяют расчетом кладки на местное смятие и принимают не менее 75 мм для панелей пролетов до 4 м и не менее 120 мм — для больших пролетов. В целях устранения местных напряжений при опирании вышележащих стен пустоты панелей в пределах опоры заделывают кирпичной кладкой, бетоном и т. п.

■ Расчет и конструирование ригеля. Ригель балочного сборного перекрытия здания с полным каркасом представляет собой элемент рамной конструкции. В зданиях с неполным каркасом (свободное опирание концов ригеля на стены) при пролетах, отличающихся не более чем на 20%, и небольшой временной нагрузке сопротивлением колонн повороту опорных сечений можно пренебречь и рассматривать ригель как неразрезную балку. Форма поперечного сечения ригеля — прямоугольная и тавровая с полками внизу или вверху (см. рис. 4.1). Ригели l≤6 м обычно выполняют без предварительного напряжения, при l>6 м — предварительно напряженными. Бетон ригелей классов В15...В30. Ригели армируют двумя-тремя плоскими сварными каркасами.

Расчет железобетонных ригелей производят по методу предельного равновесия [12]. Сущность этого расчета заключается в следующем. При определенном значении нагрузки в опасном сечении напряжения в арматуре из мягкой стали достигают предела текучести и возникает участок больших местных деформаций, называемый шарниром пластичности. Внутренний изгибающий момент в этом сечении постоянен и равен RsAsz. В статически определимой конструкции, например в свободно опертой балке (рис. 9.3, а), с появлением шарнира пластичности происходит взаимный поворот частей балки, трещины раскрываются, прогиб нарастает, и балка разрушается. Иначе ведет себя статически неопределимая конструкция. Рассмотрим однопролетную балку с защемленными концами, загруженную равномерно распределенной нагрузкой q, с одинаковым продольным армированием на опорах и в пролете. Исходя из упругого расчета следует, что первые два шарнира пластичности одновременно возникнут на опорах балки (рис. 9.3, б). Нагрузку, вызывающую такое состояние, можно определить из условия q0 = 12МA /l2.

Однако эта нагрузка еще не является разрушающей, поскольку прочность пролетного сечения осталась недоиспользованной, и балка способна воспринять дополнительную нагрузку, работая как свободно опертая конструкция с постоянными моментами на опорах. Исчерпание несущей способности наступит лишь тогда, когда в середине пролета балки напряжения в арматуре достигнут предела текучести. Дополнительная нагрузка, переводящая конструкцию в состояние предельного равновесия, определится из условия q0l2/24+Δql2/8=q0l2/12, откуда Δq=q0/3. Таким образом, расчет по методу предельного равновесия позволяет вскрыть значительный резерв несущей способности конструкции по сравнению с упругим методом расчета. При этом соотношение q0 и Δq зависит от характера нагрузки, системы армирования, вида конструкции и т. д.

Рис 9.3. К расчету неразрезного ригеля

На всех этапах нагружения должна соблюдаться известная из сопротивления материалов зависимость: сумма пролетного и соответствующих частей опорных моментов равна моментов свободно опертой балке:

Соотношение между опорными и пролетными моментами может меняться в зависимости от принятого количества арматуры на опорах и в пролетах. В соответствии с этим, назначая количество арматуры, можно планировать места образования шарниров пластичности.

Расчет с учетом перераспределения усилий позволяет стандартизировать и упростить армирование и дает экономию арматуры по сравнению с упругим расчетом до 20%. Однако при его применении должны соблюдаться следующие условия: а) в конструкции по условиям эксплуатации допускается образование трещин и шарниров пластичности; б) до полного перераспределения усилий не допускается хрупкое разрушение бетона сжатой зоны и обрыв арматуры; в) конструкция не должна разрушаться от главных растягивающих и главных сжимающих напряжений; г) в целях ограничения раскрытия трещин в пластическом шарнире величина перераспределенного (уменьшенного) момента не должна отличаться от соответствующего момента, полученного из упругого расчета, более чем на 30%; д) прогибы конструкций должны оставаться настолько малыми, чтобы геометрия конструкции не изменилась.

Благодаря своим преимуществам (простоте, надежности и т. п.) метод предельного равновесия получил широкое распространение в расчетах широкого класса статически неопределимых железобетонных конструкций (рамы, плиты, опертые по контуру, безбалочные перекрытия, тонкостенные пространственные покрытия и т. п.).

Расчет ригеля производится в такой последовательности. Вначале устанавливают расчетную схему в виде двух — пятипролетной неразрезной балки. Расчетный пролет принимают равным расстоянию между осями колонн, а в крайних пролетах — расстоянию по линии действия опорной реакции на стене до оси колонны. Подсчитываются постоянные g и временные v погонные нагрузки на ригель g=g1lsup+g2, v = v 1lsup, где g2 — нагрузка от собственного веса ригеля, g2 = bhγ; h = (1/10... 1/15)l; b = (0,3...0,4)h, lsup — ширина грузовой полосы ригеля, равная пролету панели; g1 и v 1 — нагрузки на единицу площади перекрытия.

Затем как для упругой неразрезной балки находятся моменты и поперечные силы от постоянной нагрузки g и временной нагрузки v при невыгодных расположениях последней по длине ригеля:

где α, β, γ, δ — табличные коэффициенты для определения М и Q [24].

При расположении временной нагрузки через один пролет получают максимальные моменты в загружаемых пролетах, при расположении временной нагрузки в двух смежных пролетах и далее через один получают максимальные по абсолютной величине моменты на опоре (рис. 9.3, в). По полученным эпюрам М и Q строят объемлющие эпюры и производят перераспределение усилий.

Особенно целесообразно допускать образование пластических шарниров на опорах, что дает возможность упростить конструкцию стыков и получить экономию арматуры. В этом случае перераспределение усилий сводится к добавлению к эпюрам, на которых опорные моменты имеют максимальные значения, треугольных эпюр (рис. 9.3, г); при этом минимальное значение «перераспределенного» опорного момента должно быть не менее 70% от полученного по упругому расчету.

Задаваясь классами бетона и арматуры и шириной сечения ригеля, находят высоту его сечения по моменту Mf на грани колонны:

где 1,8 — коэффициент, соответствующий значению аm = 0,289 (ξ = 0,35), при котором сечение ригеля является наиболее экономичным; Mf=M—Q/hcol/2; M — изгибающий момент по оси опоры. Тогда полная высота сечения h=h0+а. Полученные размеры округляют в соответствии с требованиями унификации.

Далее производят подбор сечений продольной арматуры в расчетных сечениях — в пролетах и на опорах, выполняют расчет наклонных сечений, строят эпюру материалов и определяют места фактического обрыва продольной арматуры в целях ее экономии (см. § 4.3); производят расчет по второй группе предельных состояний и на монтажные нагрузки.

■ Проектирование и расчет стыков ригеля с колонной. Для обеспечения неразрезности ригеля и пространственной жесткости сооружения стыки ригелей выполняют, как правило, жесткими и рассчитывают на восприятие изгибающего момента и поперечной силы. Их размещают непосредственно у боковой грани колонны; при этом ригели обычно опираются на выпущенные из колонны консоли. Стыки с консолями (рис. 9.4, б) удобны в монтаже, могут воспринимать значительные усилия, однако ухудшают интерьер помещений; применяют их преимущественно для промышленных зданий. Стыки со скрытой консолью (рис. 9.4, в) усложняют конструирование опорных частей ригеля; применяют их, главным образом, в гражданских многоэтажных зданиях связевой системы. Бесконсольные стыки (рис. 9.4, г) применяют в промышленных зданиях с повышенными требованиями к интерьеру.

Действующий в стыке опорный момент вызывает растяжение верхней части сечения и сжатие нижней (рис. 9.4, а). Растягивающие усилия во всех типах железобетонных стыков воспринимаются стыковыми стержнями (или пластинами), привариваемыми к закладным деталям или верхней арматуре ригелей. Стержни могут быть заранее забетонированы в колонну и иметь выпуски (рис. 9.4, б, г) или заводиться на монтаже в специально оставленные в колонне отверстия. Сжимающие усилия в нижней части ригеля могут передаваться через бетон, укладываемый в полость стыка (стык с обетонированием), или через сварные швы между стальными закладными деталями ригеля и консоли (необетонированный стык).

Рис. 9.4. Стыки ригелей с колоннами:

1 — ванная сварка; 2 — стыковые стержни; 3 — вставка арматуры; 4 — бетон омоноличивания; 5 — монтажный сварной шов; 6 — закладные детали; 7 — накладка «рыбка»

Расчет стыка, изображенного на рис. 9.4, б, состоит из расчета стыковых стержней и опорной консоли. Расчетное растягивающее (сжимающее) усилие в стыке N = Mf/z, где z — плечо внутренней пары сил, равное в стыке с обетонированием расстоянию от центра тяжести сжатой зоны бетона, заполняющего полость, до центра тяжести сечения соединительных стержней (рис. 9.4, а); в стыке без обетонирования — расстоянию между центрами тяжести верхней и нижней арматуры ригеля.

Площадь сечения стыковых растянутых стержней

Наименьший вылет опорной консоли с учетом зазора t между торцом ригеля и гранью колонны

где Q — опорное давление ригеля на консоль; b — ширина ригеля.

Конструкция короткой консоли (l≤0,9h0) у грани колонны (рис. 9.4, д) должна отвечать условию, обеспечивающему прочность бетона по наклонной сжатой полосе между грузом и опорой:

но не более 3,5 Rbtbh0 и не менее Q, определенной согласно (4.47), где lb — расчетный размер бетонной полосы, определяемый по формуле lb = lsupsinθ + 2acosθ; lsup — длина площадки передачи нагрузки вдоль вылета консоли; φ w 2 — коэффициент, учитывающий влияние поперечной арматуры, φ w 2 = l + 10αμ w,

Площадь сечения верхней продольной арматуры консоли подбирают по изгибающему моменту на грани колонны, увеличенному на 25% вследствие повышенной ответственности узла:

Короткие консоли рекомендуется армировать горизонтальными или наклонными (под углом 45° к горизонтали) стержнями. Шаг стержней должен быть не более h/4 и не более 150 мм.

Стык со скрытой консолью колонны и подрезкой ригеля на торцах (рис. 9.4, в) рассматривают как шарнирный, поскольку стальная накладка, приваренная на монтаже, обеспечивает восприятие лишь небольшого изгибающего момента ≈55 кН∙м. Расчет таких стыков производят по поперечной силе для наклонного сечения ригеля, начинающегося в месте подрезки.

Поперечные стержни и отгибы, установленные у конца подрезки, должны удовлетворять условию

где Q1 — поперечная сила в нормальном сечении у конца подрезки; h01, h0 — рабочая высота сечения ригеля в подрезке и вне ее.

Поперечные стержни, необходимые для обеспечения прочности наклонного сечения в подрезке, следует устанавливать на длине не менее l1 = Q1\q w +s (рис. 9.4, в). При этом продольная арматура в короткой консоли, об­разованной подрезкой, должна быть заведена за конец подрезки на длину не менее lаn и не менее l2

где As w — площадь сечения дополнительных поперечных стержней, проходящих у конца подрезки и не учитываемых при определении интенсивности поперечных стержней у подрезки; q w l=RsAs w /s; а0 — расстояние от опоры консоли до конца подрезки; d0 — диаметр обрываемого стержня.

§ 9.3. Монолитные ребристые перекрытия с балочными плитами

Монолитные ребристые перекрытия состоят из плит, второстепенных балок и главных балок, которые бетонируются вместе и представляют собой единую конструкцию. Плита опирается на второстепенные балки, а второстепенные — на главные балки, опорами которых служат колонны и стены (рис. 9.5, а).

Проектирование монолитного перекрытия включает в себя компоновку конструктивной схемы, расчет плит, второстепенных и главных балок, их конструирование.

При компоновке выбирают сетку и шаг колонн, направление главных балок, шаг второстепенных балок. Это производится с учетом назначения сооружения, архитектурно-планировочного решения, технико-экономических показателей и т.п. Главные балки располагаются параллельно продольным стенам или перпендикулярно им (рис. 9.5, б, в) и имеют пролет l1 = 6...8 м. Первое решение выгодно при необходимости лучшей освещенности потолка, второе целесообразно при больших оконных проемах и необходимости обеспечить жесткость здания в поперечном направлении. Пролет второстепенных балок l2=5...7м, плит l=1,5...3 м. По экономическим соображениям принимают такое расстояние между балками, чтобы толщина плиты была возможно меньшей, но не менее значений, указанных в § 4.1. Высота сечения второстепенных балок составляет (1/12...1/20)l2, главных (l/8...1/15)l1, ширина сечений балок b = (0,4...0,5)h. Перекрытия, как правило, выполняют из бетона класса В15 и армируют арматурной проволокой классов Вр-I, B-I и стержневой арматурой классов А-II, А-III.

Рис. 9.5. Конструктивные схемы монолитных ребристых

перекрытий с балочными плитами:

1 — плита; 2 — второстепенная балка; 3 — главная балка; 4 — колонна

■ Расчет и конструирование балочной плиты. Различают плиты монолитных перекрытий балочные и опертые по контуру. В балочных плитах, характеризуемых соотношением ly/lx>2, кривизна плиты и изгибающие моменты от нагрузки значительно больше в поперечном направлении, чем в продольном (рис. 9.6, а). Поэтому изгибом в продольном направлении пренебрегают. В плитах, опертых по контуру, необходимо учитывать изгиб в обоих направлениях. В ребристых перекрытиях наиболее часто встречаются балочные плиты. Для расчета таких плит выделяют полосу шириной 1 м (рис. 9.5, б, в) и рассматривают ее как неразрезную балку, опертую на второстепенные балки и наружные стены. Расчет плиты производят с учетом перераспределения усилий, при этом в целях упрощения конструирования принимают (см. рис. 9.6, б):

в первом пролете и на первой промежуточной опоре

в средних пролетах и на средних опорах

Рис. 9.6. Расчетная схема и армирование монолитных балочных плит

Расчетное значение средних пролетов принимают равным расстоянию между гранями второстепенных балок l02 = l2—b, крайних пролетов (при свободном опирании одного конца плиты на стену) — расстоянию между гранью ребра балки и осью опоры на стене l01=l1—0,5b.

В балочных плитах, окаймленных по контуру балками, горизонтальным смещениям опорных сечений препятствует распор Н, возникающий вследствие жесткости этих балок и повышающий несущую способность плиты (см. рис. 9.6, б). Учитывают это явление путем снижения моментов в средних пролетах и на средних опорах на 20%. Площадь арматуры в расчетных сечениях определяют как для прямоугольного сечения с одиночной арматурой шириной b=100 см и высотой hf.

Расчет плит по наклонным сечениям не производят, так как практически всегда соблюдается условие (4.33).

Армирование многопролетных балочных плит осуществляют, как правило, сварными рулонными сетками. При этом для плит с hf=6...10 см обычно применяют непрерывное армирование (рис. 9.6, г) рулонными сетками с продольной рабочей арматурой (d≤5 мм), а для плит с hf>10 см — раздельное армирование (рис. 9.6, д) плоскими или рулонными сетками с поперечной рабочей арматурой. При непрерывном армировании основную арматуру с площадью As подбирают по моменту ql /16, а в первом пролете и над первой опорой устанавливают дополнительную арматуру ΔAs, подбирая по моменту ΔM=ql /11-ql /16.

При сложном форме плит, наличии неупорядоченных отверстий, реконструкции возможно применение вязаных сеток.

■ Расчет и конструирование второстепенной балки. Второстепенную балку рассчитывают как неразрезную конструкцию, опирающуюся на главные балки и наружные стены на равномерно распределенную нагрузку (g1 + v), передаваемую плитой с полосы bf (см. рис. 9.5, б, в), и нагрузку от собственной массы g2 балки q = (g1 + v)bf+g2.

Изгибающие моменты и поперечные силы при равных или отличающихся друг от друга в пределах 20% пролетах определяют с учетом перераспределения усилий по формулам: в первом пролете M1 = ql /11; на первой от края опоре Мв=ql /14; в остальных пролетах и над опорами M = ql /16; QA=0,4ql01; QB,l=0,6ql01; на первой промежуточной опоре справа и на всех остальных опорах QB,r=Q = 0,5ql02, где l0i — расчетный пролет второстепенной балки, принимаемый равным расстоянию в свету между главными балками, а при опирании на наружные стены расстоянию от оси опоры на стене до грани главной балки (рис. 9.7, а).

Для определения отрицательных моментов в пролетах и рационального размещения арматуры по длине второстепенной балки рекомендуется строить огибающие эпюры моментов. При этом учитывают разгружающее влияние главной балки, создающей дополнительное закрепление на опорах [13]. Размеры сечения уточняют по моменту на первой промежуточной опоре, принимая ξ = 0,35, тогда h0 = 1,8 . Затем унифицируют размеры и подбирают рабочую арматуру в расчетных нормальных сечениях: в первом и средних пролетах — как для таврового сечения, на первой промежуточной и средних опорах — как для прямоугольного шириной b. На действие отрицательного момента в средних пролетах расчет ведут как для прямоугольного сечения. Расчет поперечного сечения выполняют для трех наклонных сечений: у крайней свободной опоры (на QA) и у первой промежуточной опоры слева и справа (на QB,l, QB,r).

Второстепенные балки армируют в пролете сварными каркасами, которые доводят до опор элемента и соединяют с каркасами следующего пролета стыковыми стержнями d1>0,5d, заводимыми за грани балки, в каждый пролет на длину не менее 15d1. На промежуточных опорах балки армируют узкими сетками b = 400...600мм или широкими сварными сетками с поперечной рабочей арматурой, раскатываемыми над главными балками. Если сеток две, то они в целях экономии стали смещаются друг относительно друга (рис. 9,7, а).

■ Расчет и конструирование главных балок. На главную балку передаются постоянные и временные сосредоточенные нагрузки от второстепенных балок, равные их опорным реакциям (без учета неразрезности). Кроме того, учитывается собственная масса главной балки, которую разрешается приводить к сосредоточенным грузам, приложенным в местах опирания второстепенных балок и равным массе участков главной балки между второстепенными балками.

В расчетном отношении главная балка монолитного ребристого перекрытия рассматривается как неразрезная, загруженная сосредоточенными грузами. Изгибающие моменты и поперечные силы определяют с учетом перераспределения усилий. Размеры сечений главной балки уточняют по моменту у грани колонны, тогда h0 = 1,8 ; h=h0+(6...8) см, так как над главными балками располагается арматура плиты и сеток второстепенных балок. Расчетное сечение главных балок принимают в пролете — тавровое, на опоре—прямоугольное. В пролете главную балку армируют 2...3 плоскими каркасами, соединенными перед установкой в пространственный каркас (рис. 9.7, б). При наличии третьего каркаса его обычно не доводят до грани опоры, обрывая в соответствии с эпюрой моментов. На опоре главная балка армируется двумя самостоятельными каркасами с рабочей арматурой вверху.

Рис. 9.7. Конструирование второстепенных и главных балок:

1 — второстепенная балка; 2 — главная балка; 3 — колонна

На главную балку нагрузка от второстепенной передается через сжатую зону последней (рис. 9.7, в). Эта нагрузка воспринимается поперечной арматурой главной балки, а при необходимости ставятся дополнительные сетки. Длина зоны, в пределах которой учитывается поперечная арматура, воспринимающая опорную реакцию второстепенных балок, определяется по формуле a = 2hs+b (см. § 6.3).

Необходимая площадь рабочей арматуры см. формулу (6.5)]

где F — реакция опоры второстепенной балки; h0 — рабочая высота главной балки.

§ 9.4. Монолитные ребристые перекрытия с плитами, опертыми по контуру

Существует два вида таких перекрытий. В перекрытиях первого вида балки располагаются по осям колонн, шаг которых 4...6 м (рис. 9.8, а). Балки имеют одинаковую высоту поперечных сечений. Соотношение сторон плит 1...1.5. Перекрытия второго вида, называемые кес­сонными, отличаются более частым расположением балок, отсутствием промежуточных колонн и малыми размерами плит, не превышающими 2 м (рис. 9,8, б). Перекрытия с плитами, опертыми по контуру, менее экономичны, чем с балочными плитами, при той же сетке колонн, но эстетически они выглядят лучше и применяются для перекрытия зданий общественного назначения: вестибюлей, залов и т. п.

Рис. 9.8. Ребристые монолитные перекрытия с плитами,

опертыми по контуру

Плита, опертая по контуру, работает в двух направлениях и армируется сварными сетками, укладываемыми в пролете понизу, а у опор (над балками) — поверху. При пролетах плиты более 2,5 м применяют раздельное армирование. Нижнюю арматуру выполняют из двух сеток с одинаковой площадью сечения рабочей арматуры в каждом направлении. В целях экономии одна сетка доводится до опор, а другая размещается в средней части и не доводится до опор на расстояние 1/4l1, если плита примыкает к балке (рис. 9.8, г), или на 1/8l1 при свободном опирании плиты. Верхняя арматура плиты (над балками) выполняется в виде сеток, у которых рабочие стержни располагаются в направлении, перпендикулярном балке, и заходят в пролеты через один на расстояния 1/4l1 и 1/6l1 (рис. 9.8, в).

Для расчета плит, опертых по контуру существуют два практических метода: по упругой стадии и по предельному равновесию. Расчет по упругой стадии применяют для плит, в которых трещины не допускаются. Точный расчет плит, опертых по контуру, представляет достаточно сложную задачу теории упругости. Он сводится к интегрированию дифференциальных уравнений упругой пластинки. Для плит из однородного материала эта теория разработана достаточно подробно. Для практических расчетов плит в упругой стадии существуют приближенные методы и составлены вспомогательные таблицы, позволяющие определить усилия в плитах при разных граничных условиях и нагрузках [24].

Расчет плит, в которых по условиям эксплуатации допускаются трещины, производят методом предельного равновесия. При его использовании должна быть известна схема разрушения конструкции. Опытами установлено, что в предельном состоянии по прочности в плите образуется ряд линейных пластических шарниров: на опорах – сверху вдоль балок, в пролетах – снизу по биссектрисам углов плиты и в середине пролета – вдоль длинной стороны плиты (рис. 9.8. д). Исходя из этого, плиту рассматривают как систему жестких дисков, соединенных между собой пластическими шарнирами по линиям излома. Значение момента в пластическом шарнире на единицу его длины зависит от площади сечения рабочей арматуры As и определяется по формуле

В общем случае каждая панель плиты перекрытия испытывает действие шести изгибающих моментов: двух пролетных M1 и M2 и четырех опорных M3, M4, M5, M6 (рис. 9.8, е).

Для обеспечения равновесия плиты необходимо и достаточно, чтобы имело место равенство работ внешних Wq и внутренних WM усилий на возможных перемещениях. При равномерно распределенной нагрузке q это условие имеет вид

где у — перемещения плиты в рассматриваемой точке; Mi — момент в i-м шарнире пластичности, приходящийся на единицу его длины; φi — угол поворота дисков в i-м шарнире пластичности; li — длина i-го пластического шарнира.

Нетрудно видеть, что ∫ qydA представляет собой объем фигуры перемещений плиты

где f — прогиб середины плиты.

Тогда работа внешней нагрузки

Работа внутренних усилий — изгибающих моментов на соответствующих углах поворота φ (рис. 9.8, е)

Учитывая небольшую величину φ, принимают

Из условия равенства работ (9.13) с учетом (9.15) и (9.16) получают

В том случае, когда в приопорных полосах шириной l1/4 арматура поставлена в половинном количестве (рис. 9.8, г), пролетные моменты в этих полосах будут М1/2 М2/2.

Приведенные формулы содержат шесть неизвестных моментов. Задавшись их соотношениями, получим только одно неизвестное М, определив которое, по принятым соотношениям находят и остальные моменты [12].

В практических расчетах определение моментов упрощается. Так, для средней панели квадратной плиты (l1 = 12 = 1), окаймленной по периметру балками, задавшись М123456 и приняв обрыв одной из нижних сеток на расстояние 1/4l от балок, получают для опорных и пролетных моментов

Для свободно опертой квадратной плиты все опорные моменты равны нулю, а пролетные — М1=M2=M, тогда при обрыве одной нижней сетки на 1/8l от опоры

После вычисления моментов подбирают арматуру в пролетах и на опорах как для элементов прямоугольного сечения с одиночной арматурой.

В плитах, окаймленных по всему контуру монолитно связанными с ними балками, возникает распор, повышающий их несущую способность. Поэтому при подборе арматуры значения моментов, определенные расчетом, следует уменьшать до 20% [12].

Плиты, опертые по контуру, передают нагрузку на балки в соответствии с грузовыми площадями (рис. 9.8, ж). Балки рассчитывают как обычные неразрезные с учетом перераспределения усилий. При этом расчетные пролеты принимают равными расстоянию между гранями колонн, а для крайних пролетов — между гранью колонны и осью опоры на стене.

Моменты в первом пролете и на первой промежуточной опоре

в средних пролетах и на средних опорах

где М0 — момент в свободно опертой балке;

при треугольной нагрузке (рис. 9.8, и)

при трапецеидальной нагрузке (рис. 9.8, з)

где (g+ v) — расчетная нагрузка на 1 м2 плиты; q — нагрузка от массы балки и части перекрытия с временной нагрузкой на ней.

Поперечные силы в таких балках определяют по выражениям

где Q0 — балочная поперечная сила.

Площадь сечения продольной рабочей арматуры в пролетах определяют как для тавровых сечений, а на опорах — как для прямоугольных. И в пролетах и на опорах балки армируют сварными каркасами.

§ 9.5. Сборно-монолитные балочные перекрытия

● Сборно-монолитные конструкции представляют собой рациональное сочетание в общей конструкции заранее изготовленных сборных элементов и дополнительно уложенных на месте строительства монолитного бетона (бетона омоноличивания) и арматуры. После приобретения монолитным бетоном прочности такая конструкция работает как единое целое.

Сборно-монолитные железобетонные конструкции по основным конструктивным признакам разделяют на три класса (рис. 9.9):

Рис. 9.9. Виды сборно-монолитных перекрытий:

1 — сборные элементы; 2 — монолитный бетон

класс А — сборные элементы воспринимают всю монтажную нагрузку и нагрузку от собственного веса монолитного бетона, служат несущей опалубкой и не нуждаются в установлении временных опор в процессе монтажа и производства работ; монолитный бетон располагается в основном выше нейтральной оси (рис. 9.9, а);

класс Б — сборные элементы воспринимают лишь часть монтажной нагрузки и нагрузки от собственной массы монолитного бетона, служат опалубкой, но нуждаются в установлении временных опор в процессе монтажа и производства работ; нейтральная ось располагается в пределах высоты монолитной части сечения (рис. 9.9, б, в);

класс В — сборные элементы в процессе монтажа и укладки монолитного бетона нагрузки не воспринимают, а служат лишь рабочей арматурой; монолитный бетон располагается по всей высоте поперечного сечения (рис. 9.9, г).

В качестве сборных элементов можно применять как специально запроектированные конструкции, так и типовые обычные или предварительно напряженные элементы (балки, плиты, ригели и т.п.). Размеры сборных элементов назначают из условия обеспечения их прочности при изготовлении, транспортировании и монтаже, а также прочности швов сопряжения с бетоном омоноличивания при их совместной работе. Для элементов, воспринимающих нагрузки, действующие при возведении конструкции, рекомендуется применять прямоугольные, тавровые, двутавровые, коробчатые, лотковые и другие типы сечений.

Надежную связь бетона омоноличивания с бетоном сборных элементов рекомендуется осуществлять с помощью арматуры, выпускаемой из сборных элементов, путем устройства шпонок или шероховатостей поверхности, продольных выступов и т. п. Конструктивное сочетание сборных элементов и монолитного бетона во многих случаях является экономически выгодным, так как сборно-монолитные конструкции, объединяя достоинства тех и других, лишены некоторых их недостатков. Для возведения сборно-монолитных конструкций, в отличие от монолитных, не требуется специальной опалубки, подмостей и лесов, поэтому монолитный бетон сборно-монолитных конструкций дешевле бетона монолитных конструкций, возводимых в несущей опалубке, а также пропаренного бетона сборных элементов. В сборных элементах сборно-монолитных конструкций весьма эффективно применение предварительно напряженной высокопрочной арматуры. Установкой дополнительной арматуры в опорных участках монолитного бетона легко обеспечивается неразрезность соединений элементов.

Сборно-монолитные конструкции должны удовлетворять требованиям расчета: по несущей способности с целью обеспечения прочности нормальных и наклонных к продольной оси конструкции сечений, а также по контакту сборных элементов с монолитным бетоном (первая группа предельных состояний); по перемещениям, образованию, раскрытию и закрытию трещин (вторая группа предельных состояний).

Расчет сборно-монолитных конструкций по предельным состояниям должен производиться для следующих двух стадий работы конструкции [26]:

● до приобретения бетоном омоноличивания заданной прочности на воздействие нагрузки от массы этого бетона и от других нагрузок, действующих на данном этапе возведения конструкции;

● после приобретения бетоном омоноличивания заданной прочности, т. е. при совместной работе со сборными элементами — на нагрузки, действующие на данном этапе возведения и при эксплуатации конструкций.

Расчет прочности сборно-монолитных конструкций по нормальному и наклонному сечениям производится по [1], однако необходимо соблюдать ряд дополнительных требований, изложенных в [26].

Так, при наличии в сжатой зоне сечения бетонов разные классов в расчет вводится сечение, приведенное к бетону одного класса по соотношению прочностей Rbi, с сохранением фактических значений высоты сечений всех слоев бетона, но с изменением ширины.

Расчет прочности сборно-монолитных конструкций по контакту на сдвиг производится из условия

где Qsh — расчетное усилие сдвига; bsh — ширина поверхности сдвига, по которой производится проверка прочности контакта; lsh—расчетная длина участка сдвига; τsh — среднее (по длине участка сдвига) суммарное сопротивление сдвигу, которое в общем случае слагается из сопротивления за счет сцепления и механического зацепления, работы бетонных шпонок на срез, за счет трения, а также за счет работы поперечной арматуры.

Согласно руководству по проектированию сборно-монолитных железобетонных конструкций расчет по (9.26) не требуется, однако сформулированы конструктивные требования, при соблюдении которых будет обеспечена прочность по контакту сборно-монолитных конструкций при действии статических и многократно повторных нагрузок.

§ 9.6. Безбалочные перекрытия

● Особенностью безбалочных перекрытий является непосредственное опирание плит на капители колонн (рис. 9.10, а, б). Капители создают жесткое сопряжение перекрытия с колоннами в системе каркаса здания, увеличивают прочность плиты на излом и обеспечивают плиту продавливания. В таких перекрытиях вследствие отсутствия выступающих ребер лучше используется объем помещения, уменьшается строительная высота здания, сокращается объем стеновых материалов, улучшается освещенность и проветриваемость помещений. Вследствие этого безбалочные перекрытия широко применяют для многоэтажных складов, холодильников, мясокомбинатов, гаражей. Они экономичны в зданиях с большими временными нагрузками (v >10 кН/м2) и квадратной сеткой колонн.

Рис. 9.10. Безбалочные перекрытия:

1 — капитель; 2 — надколонная плита; 3 — пролетная плита

Безбалочные перекрытия бывают сборные, монолитные и сборно-монолитные.

■ Сборные безбалочные перекрытия. Эти перекрытия применяют при сетке колонн 6×6, 6×9, 9×9 м. Они состоят из капителей, надколонных и пролетных панелей. Капители опираются на уширения колонн, соединяются с ними шпонками (см. рис. 9.10, б) и воспринимают нагрузку от надколонных панелей, идущих в двух взаимно перпендикулярных направлениях. Панели соединяются с капителью сваркой закладных деталей и, таким образом, превращаются в неразрезную систему. Пролетная панель опирается на полки надколонных панелей и работает как плита, опертая по контуру. Классы бетона панелей В25 и В30, колонн и капителей В15...В50. Рабочая арматура из стали класса А-III.

К сборным безбалочным перекрытиям относят также бескапительные перекрытия, возводимые методом подъема этажей. Работа по возведению таких перекрытий производится в следующем порядке. Вначале устраивают фундаменты, устанавливают железобетонные колонны на высоту яруса (ярус до 15 м), устраивают подготовку пола 1-го этажа, по выровненной поверхности подготовки бетонируют одну над другой пакет железобетонных плит перекрытия, нанося между ними разделяющие слои, препятствующие сцеплению слоев бетона. В местах, где колонны пересекают перекрытия, устраивают отверстия, усиленные стальными закладными деталями — воротниками, предназначенными для увеличения прочности и жесткости плит на излом и продавливание. Подъем перекрытия на проектные отметки производят с помощью системы гидродомкратов, установленных на колоннах, после чего осуществляют их закрепление.

■ Монолитные безбалочные перекрытия. Они представляют собой гладкую плиту, опертую через капители на колонны. Толщину плиты назначают из условия достаточной ее жесткости h= (1/32...1/35)l2, где l2 — размер большего пролета плиты. Монолитную безбалочную плиту армируют рулонными или плоскими сварными сетками, укладываемыми над колоннами и в пролетах. Над колоннами стержни укладывают поверху в двух направлениях, в середине плиты — понизу в двух направлениях. В пересечениях надколонных и пролетных полос необходима установка как нижней (рис. 9.10, г), так и верхней рабочей арматуры (рис. 9.10, е). Вблизи колонн верхние сетки раздвигаются, либо в сетках устраивают отверстия с установкой дополнительных стержней, компенсирующих прерванную арматуру. Капители армируют конструктивно, по углам ставят стержни диаметром 8...10 мм и охватывают их горизонтальными хомутами.

■ Сборно-монолитные безбалочные перекрытия. Такие перекрытия работают подобно монолитным, однако для их возведения не требуется устройства поддерживающих лесов и опалубки, что повышает индустриальность их возведения. Эти перекрытия укладывают по сборным панелям, надколонным и пролетным панелям.

Поскольку безбалочные перекрытия жестко соединены с колоннами и работают с ними совместно, расчет их производят как элементов рам с жесткими узлами, расположенных в двух взаимно перпендикулярных направлениях. В сборном варианте такие рамы образуются колоннами, капителями и надколонными плитами, в монолитном — колоннами и полосой перекрытия, равной по ширине расстоянию между серединами двух пролетов, примыкающих к соответствующему ряду колонн.

Раму вначале рассчитывают на невыгоднейшие комбинации постоянных и временных нагрузок как упругую систему с учетом переменной жесткости по длине элементов. Затем строят объемлющую эпюру моментов и производят перераспределение усилий с учетом допущения пластических деформаций [12]. Кроме того, предусматривают расчет на продавливание плиты по периметру капители, а также расчет на излом панелей вдоль и поперек перекрытия.

Расчет сборного перекрытия на продавливание производят в сечениях, где очертание капители образует входящие углы или изменяется толщина плиты. Предполагается, что продавливание происходит по боковой поверхности пирамиды, боковые грани которой наклонены под углом 45° к горизонту. Прочность перекрытия будет обеспечена при соблюдении условия (6.3).

Расчет плиты безбалочного перекрытия на излом производят методом предельного равновесия. Экспериментальные исследования показали, что наиболее опасными загружениями являются: полосовая нагрузка через пролет и сплошная по всей площади.

При полосовом загружении в перекрытии образуются три линейных шарнира пластичности (рис. 9.10, д). Два верхних располагаются на расстоянии а = (0,08...0,12)l1 от осей колонн, нижний — в середине пролета. Изгибающие моменты, воспринимаемые на длине l2 верхним и нижним пластическими шарнирами, равны: M1 = RsAs1z1; M2 = RsAs2z2, где z1 и z2 — плечи внутренней пары в опорном и пролетном сечениях. Используя условие (9.13), при одинаковом армировании обоих опорных сечений получим

где As1 (As2) — площадь арматуры в опорном (пролетном) пластическом шарнире в пределах одной панели.

При сплошном загружении безбалочного перекрытия каждая панель разделяется пластическими шарнирами на четыре звена, поворачивающихся вокруг опорных линейных пластических шарниров, оси которых расположены в зоне капителей, обычно под углом 45° к рядам колонн (рис. 9.10, е).

Расчетное уравнение для квадратной панели

где a1 — катет прямоугольного треугольника, отламывающегося от колонны, a1 = (0,08...0,12)l.

Задаваясь соотношением площадей опорной As1 и пролетной As2 арматуры [12], получают в уравнениях (9.27) и (9.28) только по одному неизвестному.

Расчет сборных безбалочных перекрытий допускается приближенным методом. В этом случае надколонные панели рассматривают как неразрезные балки, соединенные с капителями, пролетные панели — как плиты, опертые по контуру. Изгибающий момент в пролетной квадратной плите, учитывая частичное защемление в контурных ребрах:

где q — нагрузка на 1 м2 плиты, q=g+ v.

Опорные и пролетные моменты надколонных панелей определяют как для неразрезных балок с учетом перераспределения усилий:

где q — равномерно распределенная приведенная нагрузка на 1 м длины надколонной панели; l0 — расчетный пролет панели, принимаемый равным расстоянию в свету между краями капителей, умноженному на 1,05.

Капители рассчитывают в обоих направлениях как консоли на нагрузку от опорных реакций и моментов надколонных плит. Рабочую арматуру укладывают по верху капители, стенки капители армируют конструктивно.





Дата публикования: 2015-01-14; Прочитано: 5888 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.051 с)...