Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Классификация систем теплоснабжения



8.2.1 По месту выработки теплоты системы теплоснабжения делятся на:

ü Централизованные системы;

ü Центральные системы;

ü Местные системы

Централизованные системы — системы теплоснабжения больших жилых массивов, городов, поселков и пром. предприятий. Источниками теплоты у них служат теплоэнергоцентрали или крупные котельные, имеющие высокие кпд, транспортирующие и распределяющие теплоноситель по тепловым сетям протяженностью 10—15 км, с макс, диаметром труб 1000—1400 мм, обеспечивающим подачу потребителям теплоносителя в требуемых кол-вах и с требуемыми параметрами. Мощность ТЭЦ составляет 1000— 3000 МВт, котельных 100—500 МВт. Крупные централизованные системы теплоснабжения имеют неск. источников теплоты, связ. резервными тепломагистралями, обеспечивающими маневренность и надежность их функционирования. В централизованную систему теплоснабжения входят и системы теплоснабжения зданий, связанные с ней единым гидравлич. и тепловым режимами и общей системой управления. Однако ввиду многообразия технич. решений теплоснабжения зданий их выделяют в самостоят. технич. систему, наз. системой отопления. Поэтому Ц.ст. начинается источником теплоты и заканчивается абонентским вводом в здание.

К достоинствам пара следует отнести возможность удовлетворения и отопит, и техноло-гич. нагрузок, а также малое гидростатич. давление. Учитывая достоинства и недостатки теплоносителей, водяные системы используют для теплоснабжения жилых массивов, обществ, и коммун, зданий, предприятий, использующих горячую воду, а паровые — для пром. потребителей, к-рым необходим водяной пар. Водяные Ц.ст. — осн. системы, обеспечивающие теплоснабжение городов. Централизация теплоснабжения городов составляет 70— 80%. В крупных городах с преимущественно соврем, застройкой уровень использования ТЭЦ в качестве источников теплоты для жилищно-коммун. сектора достигает 50—60%.

В теплофикац. системах пар высоких параметров (давление 13, 24 МПа, темп-ра 565°С), вырабатываемый в энергетич. котлах, подается в турбины, где, проходя через лопатки, отдает часть своей энергии для получения электроэнергии. Осн. часть пара проходит через отборы и поступает в теплофикац. теплообменники, в к-рых он нагревает теплоноситель системы теплоснабжения. Т.о. на ТЭЦ теплота высокого потенциала используется для выработки электроэнергии, а теплота низкого потенциала — для теплоснабжения. Комбини-ров. выработка теплоты и электроэнергии обеспечивает высокую эффективность использования топлива, позволяет сократить его расход.

В большинстве централизованных систем теплоснабжения макс, темп-ра горячей воды принимается 150°С. Темп-ра пара в теплофикац. отборах турбины не превышает 127°С. Следовательно, при низких темп-pax наружного воздуха в теплофикац. теплообменных аппаратах подогреть воду до требуемого уровня нельзя. Для этого используют пиковые котлы, к-рые работают только при низких наружных темп-pax, т.е. снимают пиковую нагрузку. Т.к. отопит, нагрузка меняется с изменением наружной темп-ры, меняется и кол-во пара, отбираемого из турбины для теплоснабжения. Неотработанный пар проходит через цилиндры низкого давления турбины, отдает свою энергию и поступает в конденсатор, где поддерживается вакуум (давление 0,004—0,006 МПа), к-рому соответствуют низкие темп-ры конденсации 30—35°С, а охлаждающая вода имеет еще более низкую темп-ру, поэтому не используется для теплоснабжения. Т.о., для теплоснабжения используется только часть пара, проходящая через отборы турбины, что снижает экономич. эффект теплофикации. Однако расход топлива на выработку электроэнергии и теплоты для теплоснабжения в среднем за год сокращается примерно на 1/4—1/3. Экономич. эффект дает и использование в качестве источников теплоты крупных р-ных котельных установок (тепловых станций), имеющих высокий кпд,

Теплоноситель от источников теплоты транспортируется и распределяется между потребителями по развитым тепловым сетям. В результате тепловые сети охватывают все гор. территории, а их сооружение вызывает наибольшие градостроит. и эксплуатац. трудности. В процессе эксплуатации они подвергаются коррозии и разрушениям. Аварийные повреждения приводят к отказам теплоснабжения, социальному и экономии, ущербам. В результате тепловые сети, являясь основным элементом крупных систем теплоснабжения, становятся и наиболее слабой составляющей их частью, что снижает экономии. эффект от централизации теплоснабжения, ограничивает макс, мощность систем.

Для крупных городов централизация теплоснабжения — перспективное, направление. Централизов. системы, особенно теплофикац., расходуют меньше топлива. Сокращение и укрупнение источников теплоты улучшают условия для градостр-ва и экологию крупных городов. Меньшее кол-во источников теплоты позволяет резко сократить число дымовых труб, через к-рые в окружающую среду выбрасываются продукты сгорания. Исключается необходимость создания множества мелких топливных складов для хранения твердого топлива, откуда при децентрализованных системах теплоснабжения приходится развозить топливо, а из разбросанных по всему городу небольших котельных увозить золу и шлаки. Кроме того, при централизации источников теплоты легче очищать дымовые газы от токсичных компонентов.

Ц.с.т. рационально строить по иерархич. Принципу. Источником теплоты является ТЭЦ (первый иерархич. уровень). Для повышения надежности теплоснабжения ТЭЦ состоит из неск. энергетич. котлов и паровых турбин: Осн. элементы ТЭЦ имеют резервы. Водяной пар из котлов через пароперегреватель поступает в турбины, где отдает часть своей тепловой энергии, к-рая превращается в механич. и далее, в электрогенераторе, в электрич. Пар из отборов турбины поступает в теплофикац. подогреватели, в к-рых нагревает циркулирующий в системе теплоноситель до 120°С. Неотработанный пар поступает в конденсатор, где поддерживаются параметры:,0,005 МПа и 32°С, при к-рых он конденсируется и отдает свою теплоту охлаждающей воде. Конденсат из конденсатора с помощью конденсаторного насоса поступает в деаэратор. На пути к нему он проходит регенеративные подогреватели (на схеме не показаны). В деаэратор поступают подпиточная вода из химводоочистки и пар из отбора турбины для поддержания требуемой темп-ры. В деаэраторе из воды выделяются кислород и углекислый газ, к-рые вызывают коррозию металла. Питательная вода из деаэратора питательными насосами подается в паровые энергетич. котлы (парогенераторы). На пути вода подогревается в регенеративных подогревателях высокого давления (на схеме не показаны). Этот подогрев повышает термин, кпд цикла. Теплофикац. вода, циркулирующая в системе, нагревается в теплофикац. подогревателях в теплоприготовит. установке ТЭЦ. Нагрев осуществляется паром, к-рый отбирается из турбины и конденсируется в подогревателях. В нижний подогреватель пар поступает более низкого давления (до 0,2 МПа), чем в верхний (до 0,25 МПа). Конденсат из верхнего подогревателя через кондеисатоотводчик поступает в нижний подогреватель и далее коиденсатным насосом направляется в питат. линию. В теплофикац, подогревателях вода может нагреться примерно до 120°С (при 0,25 МПа темп-pa насыщения 127°С). При низких темп-pax наружного воздуха догрев воды до 150 С осуществляется в пиковых котлах. Циркуляцию воды обеспечивают циркуляц. насосы, перед к-рыми в трубопровод поступает подпиточная вода.

Тепловые сети проектируют в виде двух уровней: магистр. теплопроводы — второй иерархич. уровень и разводящие сети микрорайонов и кварталов — третий иерархич. уровень. Магистральные тепловые сети резервируют.

При больших диаметрах тепломагистралей ответвления от них присоединяют дублированным способом с двух сторон секционной задвижки. При отказе участка справа от задвижки теплоноситель движется по ответвлению слева и наоборот. Такое присоединение исключает влияние отказов магистр. теплопроводов на надежность теплоснабжения. Вблизи узла при- соединения ответвления к магистр. теплопроводу целесообразно устанавливать районный тепловой пункт — осн. сооружение системы теплоснабжения микрорайона, к-рое обеспечивает автоматич. управление эксплуатац. и аварийными гидравлич. и тепловыми режимами. Управление, осуществляется из диспетчерского пункта с помощью телесистемы. К тепловым сетям микрорайонов и кварталов здания присоединяют через индивидуальные тепловые пункты, группы зданий — через центральные тепловые пункты. Эти сети не резервируют и выполняют тупиковыми, поэтому их диаметры ограничивают величиной в 300—350 мм. В индивид. тепловых пунктах устанавливают теплообменники горячего водоснабжения и узел присоединения системы отопления и вентиляции, в центр, также устанавливают подогреватели горячего водоснабжения, но узлы присоединения систем отопления и вентиляции располагают в зданиях. Поэтому от ЦТП к зданиям идет четырехтрубная система: две трубы с расчетными температурами 150—70°С на отопление и вентиляцию, одна с темп-рой 60°С и циркуляция для горячего водоснабжения.

Надежность функционирования системы тепловых сетей проверяют расчетом. Нормативы надежности в конечном счете определяют долю нерезервиров. сетей, степень секционирования и дублирования отд. элементов системы.

Централизованные системы теплоснабжения бывают водяные и паровые. Осн. преимущество воды как теплоносителя в значительно меньшем расходе энергии на транспортирование единицы теплоты в виде горячей воды, чем в виде пара, что обусловливается большей плотностью воды. Снижение расхода энергии дает возможность транспортировать воду на большие расстояния без существ, потери энергетич. потенциала. В крупных системах темп-pa воды понижается примерно на 1° на пути в 1 км, тогда как давление пара (его энергетич. потенциал) на том же расстоянии примерно на 0,1—0,15 МПа, что соответствует 5—10°С. Поэтому давление пара в отборах турбины у водяных систем ниже, чем у паровых, что приводит к сокращению расхода топлива на ТЭЦ. К др. достоинствам водяных систем относятся возможность центрального регулирования подачи теплоты потребителям путем изменения темп-ры теплоносителя и более простая эксплуатация системы (отсутствие конденсатоотводчиков, конденсатопроводов, конденсатных насосов).

Центральные системы отопления – системы отопления, в которых имеется один теплоисточник, размещающийся в котельной, ТЭЦ, ЦТП и др., и теплопроводы, подведённые к отопительным приборам в нескольких зданиях.

Примером центральной системы является система отопления жилого дома с собственным тепловым пунктом или котельной

Тепловой центр может размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания - в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящей котельной) или ТЭЦ.

Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплогенераторы, теплообменники и отопительные приборы системы здесь разделены: теплоноситель нагревается на тепловой станции, перемещается по наружным и внутренним теплопроводам в отдельные помещения каждого здания к отопительным приборам и возвращается на тепловую станцию.

8.2.2 По виду теплоносителя в системе:

Теплоноситель — жидкое или газообразное вещество, применяемое для передачи тепловой энергии.

На практике чаще всего применяют воду (в виде пара или жидкости), глицерин, нефтяные масла, расплавы металлов (Sn, Pb, Na, К), воздух, азот (в том числе жидкий), фреоны (в случае использования фазовых переходов обычно называют хладагентами) и др.

Рабочий диапазон температур

Не существует теплоносителя, способного перекрыть весь диапазон от 0 до, скажем, 3000 Кельвина. У каждого вида теплоносителя есть свой рабочий диапазон, есть диапазон, в котором теплоноситель может находиться небольшое время без существенной деградации. Однако существуют специально разработанные терможидкости с расширенным рабочим диапазоном, который недостижим для воды, силиконовых масел и других классических теплоносителей.

Теплоёмкость

Определяет количество теплоносителя, которое необходимо прокачивать в единицу времени для переноса заданного количества тепла.

Коррозионная активность

Ограничивает применение некоторых теплоносителей, заставляет добавлять ингибиторы коррозии (классический пример - гликолевые антифризы для автомобилей), накладывает ограничения на материал конструкции.

Вязкость

Косвенно влияет на скорость прокачки, на потери в трубопроводах, на коэффициент теплопередачи в теплообменниках. Может изменяться в очень широких пределах при изменении температуры.

Смазывающая способность

Накладывает ограничения на конструкцию и материалы циркуляционного насоса и прочих механизмов, соприкасающихся с теплоносителем.

Безопасность

Температура вспышки, температура воспламенения, токсичность жидкости и её паров. Вероятность ожогов, как горячих, так и криоожогов.

8.2.3 По способу подключения

системы отопления к системе теплоснабжения:

Независимая схема подключения — схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления.

Зависимая схема подключения — схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.

По способу присоединения системы горячего водоснабжения к системе теплоснабжения:

В закрытых системах теплоснабжения, сетевая вода, циркулирующая в трубопроводах тепловой сети, используется только как теплоноситель (потребителем из тепловой сети не отбирается). В закрытых системах теплоснабжения, сетевой водой в теплообменных аппаратах осуществляется нагрев холодной водопроводной воды. Затем нагретая вода, по внутреннему водопроводу, подается к водоразборным приборам жилых, общественных и промышленных зданий.

В открытых системах теплоснабжения сетевая вода, циркулирующая в трубопроводах тепловой сети, используется не только как теплоноситель, а частично (или полностью) отбирается потребителем из тепловой сети.

8.2.4. По количеству труб

По числу трубопроводов, используемых для переноса теплоносителя, различают одно-, двух- и многотрубные системы теплоснабжения.

Однотрубные системы применяют в тех случаях, когда теплоноситель полностью используется потребителями и обратно не возвращается (например, в паровых системах без возврата конденсата и в открытых водяных системах, где вся поступающая от источника вода разбирается на горячее водоснабжение потребителей).

В двухтрубных системах теплоноситель полностью или частично возвращается к источнику тепла, где он подогревается и восполняется.

Многотрубные системы устраивают при необходимости выделения отдельных видов тепловой нагрузки (например, горячего водоснабжения), что упрощает регулирование отпуска тепла, режим эксплуатации и способы присоединения потребителей к тепловым сетям.

8.2.5. По способу прокладки труб:

ü Надземные;

ü Подземные: канальные и бесканальные.

Канальные прокладки – в различных каналах: проходных туннелях (1,8 – 2,9 м); полупроходных (0,8 – 1,6 м); непроходных (до 0,8 м)

Тепловые сети по способу прокладки де­лятся на подземные и надземные (воз­душные). Подземная прокладка трубопрово­дов тепловых сетей выполняется: в каналах непроходного и полупроходного поперечно­го сечения, в туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения, во внутриквартальных коллекторах и технических под­польях и коридорах, бесканально.

Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая кон­струкция) и на кронштейнах.

К особой группе конструкций относятся специальные сооружения: мостовые пере­ходы, подводные переходы, тоннельные пе­реходы и переходы в футлярах. Эти сооруже­ния, как правило, проектируются и строятся по отдельным проектам с привлечением спе­циализированных организаций.

Выбор способа и конструкций проклад­ки трубопроводов обуславливается многими факторами, основными из которых являют­ся: диаметр трубопроводов, требования экс­плуатационной надежности теплопроводов, экономичность конструкций и способ выпол­нения строительства.

При размещении трассы тепловых сетей в районах существующей или перспективной городской застройки по архитектурным со­ображениям обычно принимается подземная прокладка трубопроводов. В строительстве подземных тепловых сетей наибольшее при­менение получила прокладка трубопроводов в непроходных и полупроходных каналах.

Канальная конструкция имеет ряд по­ложительных свойств, отвечающих специфи­ческим условиям работы горячих трубо­проводов. Каналы являются строительной конструкцией, ограждающей трубопроводы и тепловую изоляцию от непосредственного контакта, с грунтом, оказывающим на них как механические, так и электрохимические воздействия. Конструкция канала полностью разгружает трубопроводы от действия массы грунта и временных транспортных нагрузок, поэтому при их расчете на прочность учиты­ваются только напряжения, возникающие от внутреннего давления теплоносителя, соб­ственного веса и температурных удлинений трубопровода, которые можно определить с достаточной степенью точности.

Прокладка в каналах обеспечивает сво­бодное температурное перемещение трубо­проводов как в продольном (осевом), так и в поперечном направлении, что позволяет использовать их самокомпенсирующую спо­собность на угловых участках трассы тепло­вой сети.

Использование при канальной проклад­ке естественной гибкости трубопроводов для самокомпенсации дает возможность сокра­тить количество или полностью отказаться от установки осевых (сальниковых) компен­саторов, требующих сооружения и обслужи­вания камер, а также гнутых компенсаторов, применение которых нежелательно в город­ских условиях и приводит к увеличению за­трат труб на 8-15%.

Конструкция канальной прокладки яв­ляется универсальной, так как может быть применена при различных гидрогеологиче­ских грунтовых условиях.

При достаточной герметичности строи­тельной конструкции канала и исправно ра­ботающих дренажных устройствах создают­ся условия, препятствующие проникновению в канал поверхностных и грунтовых вод, что обеспечивает неувлажняемость тепловой изоляции и предохраняет от коррозии на­ружную поверхность стальных труб. Трасса тепловых сетей, прокладываемых в каналах (в отличие от бесканальной), может быть выбрана без значительных трудностей по проезжей и непроезжей территории города совместно с другими коммуникациями, в об­ход или с небольшим приближением к суще­ствующим сооружениям, а также с учетом различных планировочных требований (пер­спективные изменения рельефа местности, назначения территории и пр.).

Одним из положительных свойств ка­нальной прокладки является возможность применения в качестве подвесной теплоизо­ляции трубопроводов легких материалов (из­делия из минеральной ваты, стекловолокна и др.) с малым коэффициентом теплопро­водности, что позволяет снизить тепловые потери в сетях.

По эксплуатационным качествам про­кладка тепловых сетей в непроходных и по­лупроходных каналах имеет существенные различия. Непроходные каналы, недоступ­ные для осмотра без вскрытия дорожной одежды, разработки грунта и разборки строительной конструкции, не позволяют об­наружить возникшие повреждения теплоизо­ляции и трубопроводов, а также профилактически их устранить, что приводит к необ­ходимости производства ремонтных работ в момент аварийных повреждений.

Несмотря на недостатки, прокладка в непроходных каналах является распростра­ненным типом подземной прокладки теп­ловых сетей.

В полупроходных каналах, доступных для прохода эксплуатационного персонала (при отключенных теплопроводах), осмотр и обнаружение повреждений теплоизоляции, труб и строительных конструкций, а также их текущий ремонт могут быть в большин­стве случаев выполнены без разрытия и раз­борки канала, что значительно увеличивает надежность и срок службы тепловых сетей. Однако внутренние габариты полупроход­ных каналов превышают габариты непро­ходных каналов, что, естественно, увеличи­вает их строительную стоимость и расход материалов. Поэтому полупроходные ка­налы применяются главным образом при прокладке трубопроводов больших диамет­ров или на отдельных участках тепловых се­тей при прохождении трассы по территории, не допускающей производства разрытий, а также при большой глубине заложения ка­налов, когда засыпка над перекрытием пре­вышает 2,5 м.

Как показывает опыт эксплуатации, тру­бопроводы больших диаметров, проложен­ные в непроходных каналах, недоступных для осмотра и текущего ремонта, наиболее подвержены аварийным повреждениям по причине наружной коррозии. Эти поврежде­ния приводят к длительному прекращению теплоснабжения целых жилых районов и промышленных предприятий, производству аварийно-восстановительных работ, дезорга­низации движения транспорта, нарушению благоустройства, что связано с большими материальными затратами и опасностью для эксплуатационного персонала и населения. Ущерб, наносимый в результате поврежде­ний трубопроводов больших диаметров, не идет ни в какое сравнение с повреждениями трубопроводов средних и малых диаметров.

Учитывая, что удорожание строитель­ства одноячейковых полупроходных каналов по сравнению с каналами непроходными при диаметре тепловых сетей 800 — 1200 мм не­значительно, следует рекомендовать их при­менение во всех случаях и на всем протяже­нии тепломагистралей указанных диаметров. Рекомендуя прокладку трубопроводов боль­ших диаметров в полупроходных каналах, нельзя не отметить их преимущества перед непроходными каналами по степени ремон­топригодности, а именно возможности заме­нять в них изношенные трубопроводы на значительном протяжении без разрытия и разборки строительной конструкции с при­менением закрытого способа производства монтажных работ.

Сущность закрытого способа замены из­ношенных трубопроводов состоит в извлече­нии их из канала путем горизонтального перемещения одновременно с монтажом новых изолированных трубопроводов с по­мощью домкратной установки.

Необходимость в сооружении туннелей (проходных каналов) возникает, как правило, на головных участках магистральных тепло­вых сетей, отходящих от крупных ТЭЦ, когда приходится про­кладывать большое количество трубопрово­дов горячей воды и пара. В таких тепло­фикационных туннелях прокладка кабелей сильных и слабых токов не рекомендуется из-за практической невозможности создания в нем требуемого постоянного температур­ного режима.

Теплофикационные туннели сооружают­ся главным образом на транзитных участках трубопроводов большого диаметра, прокла­дываемых от ТЭЦ, размещенных на пери­ферии города, когда надземная прокладка трубопроводов не может быть допущена по архитектурно-планировочным соображе­ниям.

Туннели должны размещаться в наибо­лее благоприятных гидрогеологических усло­виях, чтобы избежать устройства глубоко расположенного попутного дренажа и дре­нажных насосных станций.

Общие коллекторы, как правило, сле­дует предусматривать в следующих случаях: при необходимости одновременного разме­щения двухтрубных тепловых сетей диамет­ром от 500 до 900 мм, водопровода диа­метром до 500 мм, кабелей связи 10 шт. и более, электрических кабелей напряжением до 10 кВ в количестве 10 шт. и более; при реконструкции городских магистралей с раз­витым подземным хозяйством; при недо­статке свободных мест в поперечном про­филе улиц для размещения сетей в транше­ях; на пересечениях с магистральными ули­цами.

В исключительных случаях по согласо­ванию с заказчиком и эксплуатационными организациями допускается прокладка в кол­лекторе трубопроводов диаметром 1000 мм и водоводов до 900 мм, воздуховодов, холодопроводов, трубопроводов оборотного во­доснабжения и других инженерных сетей. Прокладка газопроводов всех видов в общих городских коллекторах запрещается

Общие коллекторы следует проклады­вать вдоль городских улиц и дорог прямоли­нейно, параллельно оси проезжей части или красной линии. Целесообразно размещать коллекторы на технических полосах и под полосами зеленых насаждений. Продольный профиль коллектора должен обеспечивать самотечный отвод аварийных и грунтовых вод. Уклон лотка коллектора следует при­нимать не менее 0,005. Глубину коллектора необходимо назначать с учетом глубины за­ложения пересекаемых коммуникаций и дру­гих сооружений, несущей способности кон­струкций и температурного режима внутри коллектора.

Принимая решение о прокладке трубо­проводов в туннеле или коллекторе, следует учитывать возможность обеспечения отвода дренажных и аварийных вод из коллектора в существующие ливневые стоки и есте­ственные водоемы. Размещение коллектора в плане и профиле по отношению к зданиям, сооружениям и параллельно прокладывае­мым коммуникациям должно обеспечивать возможность производства строительных ра­бот без нарушения прочности, устойчивости и рабочего состояния этих сооружений и коммуникаций.

Туннели и коллекторы, размещаемые вдоль городских улиц и дорог, как правило, сооружаются открытым способом с приме­нением типовых сборных железобетонных конструкций, надежность которых должна быть проверена с учетом конкретных мест­ных условий трассы (характеристики гидро­геологических условий, транспортных нагру­зок и пр.).

В зависимости от количества и вида ин­женерных сетей, прокладываемых совместно с трубопроводами, общий коллектор может быть одно- и двухсекционным. Выбор кон­струкции и внутренних габаритов коллек­тора должен производиться также в зависи­мости от наличия прокладываемых комму­никаций.

Проектирование общих коллекторов должно проводиться в соответствии со схе­мой их сооружения на перспективу, состав­ленной с учетом основных положений гене­рального плана развития города на расчет­ный срок. При строительстве новых районов с озелененными улицами и свободной плани­ровкой жилой застройки тепловые сети вме­сте с другими подземными сетями разме­щают вне проезжей части — под технически­ми полосами, полосами зеленых насаждений, а в исключительных случаях — под тротуа­рами. Рекомендуется размещать инженерные подземные сети на незастроенных террито­риях вблизи полосы отвода улиц и дорог.

Прокладка тепловых сетей на террито­рии вновь строящихся районов может быть выполнена в коллекторах, сооружаемых в жилых кварталах и микрорайонах для раз­мещения инженерных коммуникаций, обслу­живающих данную застройку, а также в технических подпольях и технических кори­дорах зданий.

Прокладка распределительных тепловых сетей диаметром до Dу 300 мм в техниче­ских коридорах или подвалах зданий высо­той в свету не менее 2 м допускается при условии создания возможности их нормаль­ной эксплуатации (удобство обслуживания и ремонта оборудования). Трубопроводы должны укладываться на бетонные опоры или кронштейны, а компенсация темпера­турных удлинений осуществляться за счет П-образных гнутых компенсаторов и угло­вых участков труб. Технические подполья должны иметь два входа, не сообщающиеся с входами в жилые помещения. Электропро­водка должна выполняться в стальных тру­бах, а конструкция светильников — исклю­чать доступ к лампам без специальных приспособлений. Запрещается в местах про­хождения трубопровода устраивать склад­ские или другие помещения. Прокладку теп­ловых сетей в микрорайонах по трассам, со­впадающим с другими инженерными комму­никациями, следует предусматривать совме­щенную в общих траншеях с размещением трубопроводов в каналах или бесканально.

Способ надземной (воздушной) про­кладки тепловых сетей имеет ограниченное применение в условиях сложившейся и пер­спективной застройки города из-за архитек­турно-планировочных требований, предъяв­ляемых к сооружениям такого вида.

Надземная прокладка трубопроводов широко применяется на территории про­мышленных зон и отдельных предприятий, где они размещаются на эстакадах и мачтах совместно с производственными паропрово­дами и технологическими трубопроводами, а также на кронштейнах, укрепляемых на стенах зданий.

Значительное преимущество имеет над­земный способ прокладки по сравнению с подземным при строительстве тепловых се­тей на территориях с высоким уровнем стоя­ния грунтовых вод, а также при просадочных грунтах и в районах вечной мерзлоты.

Следует принимать во внимание, что конструкция тепловой изоляции и собствен­но трубопроводы при воздушной прокладке не подвергаются разрушающему действию грунтовой влаги, а поэтому существенно по­вышается их долговечность и снижаются тепловые потери. Существенным является также экономичность надземной прокладки тепловых сетей. Даже при благоприятных грунтовых условиях по стоимости капиталь­ных затрат и расходу строительных материа­лов воздушная прокладка трубопроводов средних диаметров экономичнее подземной прокладки в каналах на 20 — 30%, а при больших диаметрах — на 30 — 40%.





Дата публикования: 2015-01-04; Прочитано: 2355 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...