Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Группы сцепления и хромосомная теория наследственности



На фотографии изображен Томас Гент Морган, который первым обнаружил сцепленное наследование признаков (вначале сцепление с полом, а затем и признаков друг с другом) и генетическую рекомбинацию между ними. Это явилось генетической основой хромосомной теории наследственности, за что ему была присуждена Нобелевская премия.

Гены, расположенные в одной паре гомологичных хромосом наследующиеся единой группой. Морган назвал ее группой сцепления. Совместное наследование генов, ограничивающее свободное их комбинирование, называют сцеплением генов.

Гены в гомологичных хромосомах расположены в одном и том же порядке у всех людей. Но аллели (альтернативные состояния этих генов) могут в различаться в гомологичных хромосомах. Рассмотрим хромосомы вашей мамы. Обозначим аллели генов той хромосомы, которые она получила от вашей бабушки буквами Б, а те аллели той же хромосомы которые получила от дедушки буквами Д. Если рекомбинация не произошла, то у вас, как и у вашей мамы, будет присутствовать хромосома с набором аллелей БББББББ (ну если дедушкина хромосома к вам попала, то набор будет ДДДДДД) Генетическая рекомбинация – это обмен блоками аллелей между гомологичными хромосомами. Если рекомбинация произойдет при образовании той яйцеклетки, из которой вам повезло родиться, то блок аллелей бабушки будет продолжен блоком аллелей дедушки. Например, если рекомбинация произойдет между генами №4 и №5, то набор аллелей этой хромосомы будет выглядеть у вас так: ББББДДДД.

Чем больше расстояние между генами, тем выше вероятность рекомбинации между ними. Впервые это предположил и доказал Морган. Т.Морган предположил, что частота кроссинговера показывает относительное расстояние между генами: чем чаще осуществляется кроссинговер, тем далее отстоят гены друг от друга в хромосоме, чем реже кроссинговер, тем они ближе друг к другу.

Морган провел количественное исследование рекомбинации на дрозофилах. Он исследовал сцепленные гены, определяющие цвет тела, цвет глаз и форму крыльев. Все эти гены находятся в Х-хромосоме, то есть у самок две Х-хромосомы, а у самцов – одна.

Самки, гетерозиготные по всем трем генам, были скрещены с самцами, несущими рецессивные аллели этих генов. Так как самки были гетерозиготны, они обладали признаками дикого типа. Самцы, у которых второй Х-хромосомы нет, имели рецессивные признаки – желтый цвет тела (рецессивный аллель у, yellow), белые глаза (рецессивный аллель w, white) и расщепленные крылья (рецессивный аллель bi, bifid),

Если бы все было «по Менделю», то маркеры должны были бы комбинироваться независимо друг от друга. Но Морган к этому времени уже определил, что маркеры эти наследуются практически одним блоком – это явление и было названо генетическим сцеплением. При наследовании единым блоком самки в потомстве должны были получаться двух классов, смотря какую мамину хромосому получит дочь: либо гетерозиготные по всем трем генам, - yY, wW, biBi (если получили от матери доминантные гены), либо гомозиготные по всем трем рецессивным генам - yy, ww, bibi (если получили от матери хромосому с рецессивными генами). Однако иногда гены из одной группы сцепления все же наследуются раздельно, то есть появляются также и самки с другими генотипами. Например, с набором Yy, bibi, то есть получившие от матери сочетание аллеля Y и аллеля bi. Частота изменения комбинации маркеров у (желтый цвет тела) и bi (расщепленные крылья) составила 4,7%. То есть на 1000 мух таких было 47. Доля рекомбинантов между маркерами у (желтое тело) и w (белые глаза) была равна 1,2%, а между маркерами w (белые глаза) и bi (расщепленные крылья) - 3,5%.

Несложно заметить, что 3,5%+1,2%=4,7%. Если считать, что процент рекомбинации отражает расстояние между генами, то это означает, что гены могут быть расположены только линейно и никак иначе.

На тот момент еще не было ничего известно ни про ДНК, ни про химию наследственности – были просто формальные генетические признаки. Но Морган и без этого смог показать, что гены расположены линейно относительно друг друга, что бы ни было носителем генов. Вывод о том, что частота кроссинговера является функцией расстояния между генами и их линейного расположения в хромосомах и принес Моргану Нобелевскую премию.

Параллельно с генетическими исследованиями Моргана шли цитологические исследования. Исследовался митоз, мейоз, и было известно, что в мейозе (профаза I) пары одинаковых (гомологичных) хромосом объединяются, а затем образуют крестообразные фигуры (хиазмы). Предположили, из чисто цитологических данных, что наблюдаемый под микроскопом перекрест хромосом связан с обменом сегментами между ними. Впоследствии это было подтверждено. Хромосомы маркировали – нашли мух у которых на хромосоме были дополнительные фрагменты (транслокация), видимые под микроскопом. Было видно, что в результате перекреста измененные морфологически хромосомы родителей оказываются у потомства в новых комбинациях.

На рисунке показано, как выглядят хиазмы – крестообразные структуры, образуемые гомологичными хромосомами в мейозе и различимые под микроскопом.

Хромосомы состоят из двух параллельных «линеечек», которые называются хроматидами, каждой из которых соответствует одна молекула ДНК. Под микроскопом было видно, что одна из пар хроматид пересекается, то есть между хромосомами происходит перекрест.

Был проведен следующий эксперимент. Х-хромосома дрозофилы была промаркирована дополнительным кусочком хромосомы, и было подтверждено соответствие генетических и цитологических данных, описывающих рекомбинацию.

Частота видимых под микроскопом перекрестов в данной хромосоме в расчете на 1 клетку в фазе мейоза, где перекрест можно наблюдать, стремится к двукратной частоте генетической рекомбинации между всеми маркерами этой хромосомы, по мере роста числа маркеров. Причина этого ограничения заключается в том, что в перекресте участвует, как правило, лишь одна из двух пар хроматид. Стало понятно, что можно связать количество перекрестов наблюдаемых цитологически (хиазмы) с частотой генетической рекомбинации, что особенно четко было показано на кукурузе в 50-х годах.

Длина генетической карты, выявляемая по анализу результатов генетической рекомбинации, вычисляется как сумма расстояний между наиболее близкими маркерами, Единицей генетической карты является 1% рекомбинации и эта величина была названа в честь Моргана 1 сантиМорган (1 сМ).

Данные о связи цитологии с генетикой оказались очень важными в последующих генетических исследований, в частности на человеке. Они позволяют вычислить длину генетической карты по цитологическим данным, не прибегая к получению мутантов, чистых генетических линий и даже вообще без направленных скрещиваний – все это невозможно на человеке. У человека расчетная длина генетической карты по цитологическим данным составляет около 3000 сМ. или 3000% (три тысячи процентов рекомбинации).

Почему длина генетической карты человека равна 3000% (и почему нет ничего страшного в том, что эта величина превышает 100%).

Генетическая карта – это последовательность маркеров в хромосоме и расстояния между ними, следующие из частот генетических рекомбинаций. Одна единица карты соответствует 1% рекомбинации или одному сантиморгану (1 сМ).

Проведем следующую аналогию, чтобы было легче понять, почему длина карты человека равна больше, чем 100%. Один и тот же термин иногда используется в разных смыслах:100 градусов – температура кипения воды. 90 градусов – прямой угол. 40 градусов – крепость водки. И обычно эти смыслы никто не путает

То же и с термином процент (pro cent = на сто) который используется в разных смыслах при описании рекомбинации.

1) Генетическое расстояние между двумя маркерами (1сантиморган, сМ=1% рекомбинации). Например, наблюдаемый процент рекомбинации в потомстве (12% рекомбинантов, как описывалось выше), где общее число потомков равно 100%. Доля рекомбинантов по одной паре маркеров не может превышать 50% от общего числа потомков (несцепленное наследование);

2) Общая длина генетической карты организма (N cантиморган = N %) Рассчитывается как сумма минимальных экспериментально определенных генетических расстояний между парами маркеров, и для каждого вида своя.

Количество последовательно расположенных пар маркеров, каждый из которых равен, например, 12%, может быть и не ограниченным. Восемь таких отрезков составят в сумме 96%, а восемьдесят отрезков – 960%. Хотя доля рекомбинантов между любыми двумя из этих 81 маркеров, конечно, не может превышать 50% от общего числа потомков.

Отметим, в заключение, что длина генетической карты человека определялась по цитологическим данным, которые были доступны уже достаточно давно. В отличие от мухи, установить длину генетической карты человека на основе экспериментов по скрещиванию невозможно.

Поиск или диагностика мутации, вызывающей заболевание, наследуемое по Менделю, часто проводится по сонаследованию признака «болезнь» и маркера-свидетеля, расположенного рядом с мутантным геном. Маркер-свидетель – это такой маркер, который легко обнаружить при анализе. Источник ошибки диагностики - утрата связи при рекомбинации между мутацией, вызывающей заболевание и маркером-свидетелем. Точность диагностики тем выше, чем меньше это расстояние.

Вопрос. Сколько генетических маркеров нужно иметь в геноме человека, чтобы обеспечить >95% точность диагностики для любого гена, если длина генома человека – 3000%.

Точность не менее 95% означает, что не более генетическое расстояние между мутацией вызывающей заболевание и маркером составляет не более 5% рекомбинации. Следовательно до ближнего к маркеру левого и до ближнего правого маркера должно быть не более 5%, то есть расстояние между маркерами не более 5%х2=10% рекомбинации. В 10%-х интервалов в карте длиной 3000% будет 3000/10=300. То есть 300 равноудаленных маркеров будет достаточно, чтобы картировать или выявить мутацию с точностью >95%, даже ничего не зная о том, где находится исследуемый ген. Ясно, что когда это только начали делать, примерно 10 лет назад, маркеры ложились случайно, поэтому генетическую карту пришлось составить из нескольких тысяч маркеров, чтобы большинство интервалов между маркерами не превышало 10%. Сегодня в практической работе по общегеномному скринингу у человека используют панель из 384 равноудаленных маркеров.

Молекулярный механизм гомологичной рекомбинации, предложен Холидеем.

Рассмотрим две гомологичные хромосомы: папину и мамину. В них, как предполагается, происходит однонитевой идентичный в обеих хромосомах разрыв, после которого эти части, перекрещиваясь, образуют так называемую структуру Холидея (который данную схему рекомбинации первым предложил). Далее происходит перенос точки надреза вдоль хромосомы, в результате чего части гомологичных хромосом меняются местами. В результате получаются хромосомы, составленные из кусков папиных и маминых хромосом. Механизм гомологичной рекомбинации - однонитевой разрыв в каждой из двунитевых молекул ДНК, вытеснение и замещение нити, миграция разрыва и разрешение единичной структуры Холидея.





Дата публикования: 2015-01-14; Прочитано: 443 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...