Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі



8. Бухгалтерская отчетность в ходе проведения процедур банкротства …142

9.Практикум……………………………………………………………………….146

Учебно-методическое обеспечение курса ……………………………………..190

Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі

Розглянемо спочатку елементарну струминку. Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm=uρdω=const. Цей висновок випливає з властивостей елементарної струминки: у протилежному випадку масова витрата повинна зростати або зменшуватись необмежено, а це суперечить умові стаціонарного руху рідини. Отже, для будь-яких живих перерізів стисливої рідини або газу в елементарній струминці справедливою є умова

(9)

Рівняння (9) називають рівнянням нерозривності або суцільності руху для елементарної струминки стисливої рідини або газу. Якщо ρ=const, тобто рідина нестислива, то рівняння нерозривності руху (9) можна записати у вигляді


(10)

Цей вираз відображає властивість нестисливої рідини, тому його інколи називають рівнянням нестисливості рідини для елементарної струминки. З (10) випливає, що площа живого перерізу елементарної струминки не може дорівнювати нулю, оскільки в такому разі швидкість у цьому перерізі струминки прямуватиме до нескінченості, що фізично неможливе. Тому елементарна струминка в потоці не може обриватися в середині рідини або закінчуватися вістрям.


Аналогічно викладеному вище можна одержати рівняння нерозривності руху для реального потоку якщо просумувати витрати в елементарних струминках в межах кожного живого перерізу окремо. У результаті для стисливої рідини або газу вздовж потоку маємо


де Vi – середні швидкості у живих перерізах. При стаціонарному русі рідини, а у деяких випадках і газів (при невеликих швидкостях), зміною питомої маси можна знехтувати, тобто прийняти ρ=const. Тоді рівняння (11) можна переписати у вигляді

(12)

Можна сказати, що рівняння (12) є аналітичним записом закону збереження маси в гідравлічній формі для потоку нестисливої рідини. Це і є рівняння нерозривності для потоку рідини, котре формулюється так: витрата рідини через довільний переріз потоку в усталеному русі є величиною сталою. З рівняння (12) для двох перерізів можна записати

(13)

Тобто середні швидкості потоку обернено пропорційні площам відповідних живих перерізів.

39 Рівня́ння Берну́ллі — рівняння гідродинаміки, яке визначає зв'язок між швидкістю течії v, тиском p та висотою h певної точки в ідеальній рідині. Встановив його у 1738році Даніель Бернуллі.

Для ламінарної течії ідеальної нестисливої рідини рівняння Бернуллі має вигляд:

або

,

де ρ — густина рідини; g — прискорення вільного падіння.

40 В'я́зкість або внутрішнє тертя — властивість текучих тіл (рідин і газів) чинити опір переміщенню однієї їх частини відносно іншої. Одиниця вимірювання динамічного коефіцієнта в'язкості — Пуаз.

41 Згідно із законом Ньютона для внутрішнього тертя в'язкість характеризується коефіцієнтом пропорційності міжнапруженням зсуву і градієнтом швидкості руху шарів у перпендикулярному до деформації зсуву напрямку (поверхні шарів):

.

Коефіцієнт називають динамічний коефіцієнт в’язкості або абсолютною в'язкістю. Одиниця вимірювання динамічного коефіцієнта в'язкості — Па c, Пуаз (0,1Па·с).

Кількісно динамічний коефіцієнт в'язкості дорівнює силі F, яку треба прикласти до одиниці площі зсувної поверхні шару S, щоб підтримати в цьому шарі ламінарну течію із сталою одиничною швидкістю відносного зсуву.

42 Ламінарний потік (рос. ламинарный поток; англ. laminar flow; нім. Laminarströmung f, laminare Strömung f) – вид потоку в'язкої рідини (наприклад, нафти), при якому перемішування між сусідніми шарами рідини відсутнє. Турбулентним називається рух рідини (газу або плазми), що супроводжується утворенням вихорів.

Течія, що відбувається без утворення вихорів, називається ламінарною.

43 Число Рейнольдса () — характеристичне число[1] та критерій подібності у гідродинаміці, що базується на відношенні інертності руху течії флюїда до його в'язкості.

Це поняття було запропоноване Д.Г.Стоксом у 1851,[2] а назване на честь фізика Озборна Рейнольдса (1842–1912), який популяризував його використання у 1883.[3][4]

Число Рейнольдса часто використовують у задачах гідродинаміки при проведенні аналізу розмірностей, а також для визначення динамічної подібності між різними експериментальними випадками руху рідини. Це число також використовується для характеристики різних режимів: ламінарної або турбулентної течії. Ламінарна течія спостерігається при малих числах Рейнольдса, де сили в'язкості переважають, і вона характеризується сталістю розподілу швидкості руху рідини. Турбулентний режим спостерігається при великих числах Рейнольдса, коли переважають сили інерції, котрі, як правило, спричиняють хаотичні вихори та іншу нестабільність потоку.

Число Рейнольдса може бути визначене для низки різних ситуацій, коли рідина знаходиться у відносному русі до поверхні твердих тіл. Ці визначення зазвичай включають в себе такі властивості рідини, як густина і в'язкість, а також швидкість та характерну довжину (характеристичний розмір). Останній параметр є предметом узгоджень — наприклад радіус або діаметр в рівній мірі справедливі для характеристики сфери чи кола, але вибирають параметр попередньо узгоджений. Для задач повітро- чи судноплавання можуть використовуватись довжина або ширина об'єкту. Для задач, що розглядають течію в трубі або рух кулі в рідині часто використовують внутрішній діаметр труби чи діаметр кулі, відповідно. Для інших форм (наприклад, прямокутні труби або несферичні об'єкти) слід визначати еквівалентний діаметр. Для рідин із змінною густиною (наприклад, гази, що є стисливими) або змінною в'язкістю (неньютонівські рідини) застосовуються спеціальні правила. Швидкість в окремих випадках також може бути предметом узгоджень, зокрема, для випадку посудин з інтенсивним перемішуванням рідини.

Позначається Re[1], іноді R.

,

де: ,

Використані позначення фізичних величин:

— густина рідини або газу.

— характеристична швидкість,

— характеристична довжина або розмір,

— динамічна в'язкість,

— кінематична в'язкість,

Обтікання рідиною перешкод підкоряється закону подібності, згідно з яким подібні системи з однаковими числами Рейнольдса ведуть себе однаково. Наприклад, залежність швидкості від координати задається формулою виду

залежність тиску від координати визначається формулою виду

44 Гармонічними коливаннями називаються періодичні коливання фізичної величини (або будь-якої іншої) залежно від часу, які відбуваються згідно із законами синуса або косинуса

,

Або

,

де — це фізична величина, що коливається, — час, — це найбільше значення, яке приймає величина під час коливань, яке називають амплітудою коливань, циклічна частота коливань, фаза коливань.

Періодом коливань називається величина

.

Лінійна частота коливань визначається, як

.

45 Механі́чні колива́ння — це фізичний процес у механіці, під час якого чергуються інтервали збільшення і зменшення фізичної величини.

Бувають прості і складні. Складні коливання- це певним чином скомбіновані прості. Вони найчастіше спостерігаються в живих організмах. Прості коливання в свою чергу поділяються на:

· а) гармонічні коливання — такі коливання, які відбуваються за законом синуса або косинуса;

· б) Реальні (згасаючі) коливання — ті коливання, що мають місце в природі, поступово згасають;

· в) вимушені коливання — відбуваються при дії на систему зовнішньої сили, яка повинна діяти ритмічно (за законом гармонічних коливань).

46 Гармоні́чний осциля́тор — система (у класичній механіці), яка при зміщенні із положення рівноваги під дією певної сили (чи суперпозиції сил), повертається у попереднє положення під дією зворотної сили, пропорційної зміщенню (наприклад, за законом Гука у випадку механічних коливань):

де — додатня константа, що описує жорсткість системи.

Якщо — єдина сила, що діє на систему, то систему називають простим або консервативним гармонійним осцилятором. Вільні коливання такої системи є періодичний рух біля положення рівноваги (гармонійні коливання). Частота і амплітуда при цьому постійні, причому частота не залежить від амплітуди.

47 Вільні незгасаючі коливання[ред. • ред. код]

Незгасаючі механічні коливання виконуватиме система, що складається з тіла масою m і пружини, яка повертає тіло до положення рівноваги. Таку систему називають пружинним маятником (рис.1).

Якщо вивести тіло з положення рівноваги, відхиливши його на відстань х, то воно набуде потенціальної енергії, що дорівнює роботі розтягання пружини. Відпустивши тіло, ми даємо йому змогу повернутися в початкове положення рівноваги. У цьому положенні вся потенціальна енергія перейде в кінетичну, тіло за інерцією продовжуватиме рух, стискаючи пружину і виконуючи роботу стискання. Коли всю кінетичну енергію буде витрачено на роботу стискання, тіло зупиниться, набувши потенціальної енергії. А це означає, що процес перетворення кінетичної енергії в потенціальну, і навпаки, буде відбуватися як завгодно довго, тобто тіло виконуватиме незгасаючі коливання від до .

Рівняння коливань, тобто рівняння, що описує залежність зміщення х від часу t, можна, знайти використовуючи закони механіки. За другим законом динаміки швидкість зміни імпульсу дорівнює сумі всіх сил, які діють на тіло:

Надалі знаки векторів можна не записувати, оскільки рух одновимірний. Тіло вважатимемо матеріальною точкою з масою m. У нашому випадку діє єдина сила — пружна повертаюча сила Fпр. Згідно із законами Гука при малих зміщеннях сила пружності прямо пропорційна до зміщення: Fпр = -kx

Знак «мінус» означає, що сила направлена в бік, протилежний зміщенню. Коефіцієнт пропорційності k називається коефіцієнтом жорсткості пружного елемента. Маса m стала, і тому

або

Математи́чний ма́ятник — теоретична модель маятника, в якій матеріальна точка масою m підвішена на невагомому нерозтяжному стержні довжини l і здійснює рух в вертикальній площині під впливом сил тяжіння з прискоренням вільного падіння g.

Модель нехтує розмірами тіла, деформацією підвісу та тертям в точці підвісу стержня. Звичайно розглядаються коливання маятника в одній площині. В загальному випадку, якщо відхилити маятник від положення рівноваги та штовхнути його вбік, рух маятника буде складатися з коливань в вертикальних площинах та руху в горизонтальних.

При малому відхиленні математичний маятник здійснює гармонічні коливання. Якщо відхилення велике, то коливання маятника періодичні, але не гармонічні.

Фізи́чний ма́ятник — тверде тіло довільної форми, яке під дією сили тяжіння здійснює коливання навколо нерухомої горизонтальної осі, що не проходить через центр маси тіла.

Період коливань фізичного маятника визначається формулою

,

де I - момент інерції, m - маса, d - віддаль від центра маси тіла до осі, g - прискорення вільного падіння.

Зведена довжина фізичного маятника - довжина такого математичного маятника, період коливань якого збігається з періодом коливань даного фізичного маятника. Вона дорівнює

.

48 Затухаючі коливання - коливання, енергія яких зменшується з часом. Нескінченно що триває процес виду в природі неможливий. Вільні коливання будь-якого осцилятора рано чи пізно загасають і припиняються. Тому на практиці звичайно мають справу з затухаючими коливаннями. Вони характеризуються тим, що амплітуда коливань A є спадною функцією. Зазвичай загасання відбувається під дією сил опору середовища, найбільш часто висловлюються лінійною залежністю від швидкості коливань або її квадрата.

В акустиці: загасання - зменшення рівня сигналу до повної нечутності.

49 Резона́нс — явище сильного зростання амплітуди вимушеного коливання у разі, коли частота зовнішньої сили збігається з власною частотою коливань.

50 Хви́ля — існує кілька визначень хвилі:

· хвиля — зміна стану середовища (збурення), яке поширюється в просторі й переносить енергію.[1]

· хвиля — процес розповсюдження коливань у будь-якому середовищі чи вакуумі. Хвильовий процес — процес передачі коливань.

Хвильове рівняння[ред. • ред. код]

Докладніше: Хвильове рівняння та Формула д'Аламбера

Рівняння (1), що описує розповсюдження збурень в струні, є частинним випадком загального рівняння в частинних похідних, яке називається хвильовим рівнянням. Для збурень в тривимірному середовищі хвильове рівняння в декартових координатах записується в вигляді

     
 
(3)

Фізичний зміст введеної функції може бути різним в залежності від фізичних властивостей середовища. Це може бути потенціал швидкостей точок середовища, або збурення тиску. Рівняння такого типу належать до рівнянь гіперболічного типу і всебічно вивчаються в математичній фізиці [4]. На першому малюнку показані поверхневі гравітаційні хвилі на воді. Характер руху в таких хвилях можна описати з допомогою потенціалу швидкостей .Однак,для такого типу збурень стисливість води виявляється не суттєвою [5].

51 Повздовжня хвиля - хвиля, в якій коливання в кожній точці простору паралельні напрямку розповсюдження. Хвиля, в якій коливання відбуваються в площині, перпендикулярній напрямку розповсюдження, називається поперечною.

В повздовжній електромагнітній хвилі вектор напруженості електричного поля направлений паралельно напрямку розповсюдження.

Прикладом повздовжніх хвиль є звукові хвилі в газі.

Поперечна хвиля - хвиля, в якій коливання відбуваються в площині, перпендикулярній до напрямку поширення. Хвиля, в якій коливання паралельні напрямку руху називається повздовжною.

Оскільки в площині існують два незалежні напрямки руху, то поперечні хвилі мають дві поляризації.

До поперечних хвиль належать електромагнітні хвилі у вакуумі.





Дата публикования: 2014-12-08; Прочитано: 2438 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.017 с)...