Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Частотные представления периодических сигналов



Функция x(t) называется периодической, если при некотором постоянном Т выполняется равенство:

x(t)=x(t+nT),

где Т – период функции, n – любое целое (положительное или отрицательное) число, а аргумент t принимает значение из области определения этой функции.

x(t)

0 t

Периодическая функция x(t) с периодом Т обладает следующим свойством: интеграл от этой функции, взятый на интервале длиной Т, не изменяется при изменении пределов интегрирования при условии, что длина интервала интегрирования остается равной Т.

В общем случае сигнал представляет собой сложное колебание, поэтому возникает необходимость представить сложную функцию x(t), определяющую сигнал через простые функции.

Для представления сигналов в частотной области широко используют два частных случая разложения функции в ортогональные ряды: тригонометрическая форма разложения и комплексная.

Рассмотрим их.

1.1. Тригонометрическая форма

Любой периодический сигнал x(t), удовлетворяющий условию Дирихле (x(t) – ограниченая, кусочно-непрерывная, имеет на протяжении периода конечное число экстремумов), может быть представлен в виде ряда Фурье по тригонометрическим функциям:

(1.1)

Это выражение указывает на то, что периодическая функция x(t), имеющая период Т может быть разложена по sin и cos углов, кратных углу .

Если период функции x(t) равен Т, то основная круговая частота будет , тогда в формуле разложения x(t) значения коэффициентов a0, ak, bk определяется формулами:


k= 1, 2, 3

Зная коэффициенты ak и bk, можно определить значения амплитуды и начальной фазы j k-й гармоники.

(1.5)

(1.6)

Для практического анализа частотных свойств применяется формула (1.7), так как показывает, какой частоте сигнала соответствует определенная амплитуда

(1.7), где

- постоянная составляющая функции x(t);

k-я гармоническая составляющая;

- амплитуда, частота и начальная фаза k-й гармонической

составляющей;

- частота основной гармоники;

Т- период колебаний.

1.2. Комплексная форма

В математическом отношении удобнее оперировать комплексной формой ряда Фурье. Её получают, применяя преобразование Эйлера

(1.8)

(1.9)

Комплексная форма имеет вид:

(1.10)

где (1.11)

является комплексной амплитудой k-й гармоники для k=0, ±2, ±3,…

Формулы (1.10) и (1.11) именуются парой преобразования Фурье. Формула (1.10) даёт временн о е описание сигнала x(t), если известны комплексные амплитуды Ck её гармонических составляющих. Совокупность операций, в результате выполнения которых могут быть определены гармоники периодической функции x(t), называется гармоническим анализом.

1.3. Определение погрешности

При разложении периодических функций на сумму гармоник на практике часто ограничиваются несколькими первыми гармониками, а остальные не учитываются. Приближенно представляя функцию x(t) с помощью тригонометрического многочлена вида

(1.12)

можно получить б о льшую или меньшую ошибку представления в зависимости от способа выбора коэффициентов многочлена . Оценить величину ошибки наиболее удобно с помощью средней квадратичной погрешности d, определяемой для периодической функции x(t) с периодом T=2p равенством:

(1.13)

1.4. Амплитудно-частотные и фазо-частотные характеристики.

Совокупности коэффициентов ak, bk, k=1, 2, 3,…, разложения периодической функции x(t) в ряд Фурье называется частотными спектрами этой функции.

Совокупность амплитуд и соответствующих частот гармоник принято называть спектром амплитуд.

Совокупность амплитуд и соответствующих частот гармоник называется спектром фаз.

Спектр амплитуд и спектр фаз однозначно определяют сигнал. Однако для многих практических задач достаточно ограничиться спектром амплитуд.

Ak jk

спектральные линии

0 0

v0 2v0 3v0 kv0 v0 2v0 kv0

Характерной особенностью спектра периодического сигнала является его прерывистость (дискретность). Расстояние между соседними спектральными линиями одинаковое и равно частоте основной гармоники.





Дата публикования: 2014-12-11; Прочитано: 551 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...