Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Лекция 6. Закономерности строения и структуры географической оболочки

Лекция 6. ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И СТРУКТУРЫ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Землеведение рассматривает мир как целостную систему, детальное изучение которого дает каждая частная географическая наука. Общие законы развития природы и закон всеобщей связи явлений проявляются как специфические законы развития и целостности географической оболочки Земли. В землеведении мы имеем дело с природными системами, плавно переходящими одна в другую на разном уровне организации. Непрерывное единство событий называют континуумом.

Единство и целостность географической оболочки проявляются в том, что нельзя выделить ее часть (геосферу), не нарушив целое и не разрушив самой части, которая не может существовать вне целого.

Каждый компонент географической оболочки (рельеф, почва, воды, органический мир и др.) существует и развивается по своим законам. Однако ни один из них не существует и не развивается изолированно от других компонентов. Взаимодействие всех компонентов связывает их в единую материальную систему, где все части зависят и влияют одна на другую. Непрерывный обмен вещества и энергии между отдельными частями географической оболочки определяет ее целостность, которая настолько велика, что изменение в одном звене неизбежно отразится на остальных.

Географическая оболочка — это поразительно слаженный механизм. Например, таяние льдов неизбежно приведет к поднятию уровня Мирового океана. Это усилит эрозионную работу рек, что приведет к изменениям во внутренних районах континентов. В тропических морях кораллы будут наращивать свои постройки, чтобы догнать поднявшийся уровень океана (если растопить льды Антарктиды, уровень Мирового океана поднимется на 60 м). Одновременно произойдут изменения во всех процессах географической оболочки. Таким образом, потоки вещества (воздуха, воды, минеральных частиц и др.) и энергии служат своего рода каналами, связывающими части географической оболочки в единое целое.

Масштаб изменения системы зависит от масштаба изменения ее составных частей. Скорости развития разнокачественных компонентов не совпадают. По степени консервативности их можно расположить в убывающий ряд: литогенная основа—рельеф — климатические явления — воды—почва—растительность—животный мир. Кроме того, динамичность зависит от обстановки, в которой они находятся: деревья в тропиках растут быстрее, чем в умеренном климате. Компоненты могут тормозить эволюцию других составляющих и системы в целом, либо, напротив, усиливать ее.

Практическое значение закона целостности. Закон целостности географической оболочки — основа рационального природопользования. Вторгаясь в природу, человек порождает в ней цепную реакцию. Закон целостности предупреждает о необходимости предварительного и тщательного изучения структуры всякой территории и акватории, подвергающихся воздействию.

В природе существуют не просто цепи причин и следствий, ацелые системы взаимосвязей, игнорирование которых приводит кэкономическим и экологическим просчетам. Антропогенное вмешательство в сферу причинно-следственных связей природы, по образному выражению Д.Л.Арманда, подобно «вторжению шмелей в паутину». Воздействия человека, направленные, как правило, на ограниченные регионы (звенья), распространяются на значительные территории и акватории, и в итоге на всю географическую оболочку.

Таким образом, в географической оболочке наблюдается диалектическое сочетание единства и целостности ее структурных компонентов.

Географическая зональность. Важнейшей чертой Земли является закономерное изменение природных компонентов от экватора к полюсам, что проявляется в зональности. Основные причины зональности — форма и положение Земли относительно Солнца, вследствие чего солнечные лучи падают на земную поверхность под разными углами, постепенно уменьшающимися в обе стороны от экватора. Очевидно, что если бы Земля была плоскостью, как угодно ориентированной к потоку солнечных лучей, они падали бы на нее всюду одинаково и равномерно ее нагревали.

Таким образом, наличие зональности на земном шаре обусловлено планетарно-космическими причинами. Географическая оболочка активно трансформирует все внешние воздействия, поэтому, как заметил С.В. Калесник, правильнее говорить, что «планетарно-космические причины создают только основные предпосылки для возникновения зональности».

Сферы проявления зональности. Зональность тепловых условий была известна географам античного времени, а тепловые пояса выделяли еще древние греки. А. Гумбольдт установил зональность и высотную поясность растительности. Но честь и заслуга научного открытия географической зональности принадлежит В.В.Докучаеву, который в 1899 г. назвал зональность мировым законом. Действительно, многие физико-географические явления распределяются на земной поверхности в виде вытянутых вдоль параллелей полос. Эта пространственная структура свойственна прежде всего климатическим, гидрологическим, гидрохимическим явлениям, почвенному и растительному покрову.

Конечно, мировой закон зональности отражает лишь общие закономерности. Земная поверхность сложна и мозаична и зональные черты выделяются путем относительной генерализации более мелких структурных подразделений. Любая из имеющихся на сегодняшний день схема зонального деления земной поверхности и зонального распределения отдельных компонентов географической оболочки отличается лишь самим элементом, степенью подробности и объективной точности.

Радиационные пояса. Количество солнечной радиации, получаемое Землей, зависит от расстояния между Землей и Солнцем и угла падения солнечных лучей на земную поверхность. Ближе всего к Солнцу Земля находится в начале января, дальше всего — в начале июля. Разница между этими расстояниями составляет 5 млн км, вследствие чего Земля в первом случае получает на 3,4% больше, а во втором на 3,5% меньше радиации, чем при среднем расстоянии от Земли до Солнца (в начале апреля и в начале октября). Угол падения солнечных лучей зависит в свою очередь от географической широты и высоты Солнца над горизонтом (меняющейся в течение суток и по временам года). Различный приход солнечной радиации на разных широтах позволяет выделить радиационные пояса: жаркий (между тропиками), два умеренных (между тропиками и полярными кругами) и два холодных (между полюсами и полярными кругами). Их иногда изображают в виде поясов освещенности Земли.

Тепловые пояса. Помимо географической широты, на распределение тепла на Земле влияют соотношение площадей суши и моря, состояние атмосферы, рельеф, высота местности над уровнем моря, морские и воздушные течения. Если принять во внимание эти факторы, то, очевидно, что границы тепловых поясов совмещать с конкретными параллелями не совсем правильно. Поэтому в качестве границ обычно принимают изотермы: годовые — для выделения пояса, в котором годовые амплитуды температуры воздуха; малы, и самого теплого месяца — для выделения поясов, где колебания температуры в году более резкие. По этому принципу выделяют тепловые пояса, которых также пять: теплый, или жаркий, ограниченный в каждом полушарии годовой изотермой +20°С, проходящей вблизи 30-й северной и 30-й южной параллели, два умеренных, которые в каждом полушарии лежат между годовой изотермой +20°С и изотермой +10°С самого теплого месяца (соответственно, июля или января), два холодных, в которых средняя температура самого теплого в данном полушарии месяца менее +10°С.

Климатические пояса. В.В.Докучаев обратил внимание на то, что в формировании природных зон участвуют не только прямая солнечная радиация, но и такие важные элементы климата, как адвективное тепло и влага. Он также установил, что для каждой природной зоны характерно определенное количество тепла и годовое количество атмосферных осадков, а также соотношение между ними. Рассматривая проблему географической зональности, А.А. Григорьев констатировал, что в основе изменений строения и развития географической среды по поясам, зонам и подзонам лежат, прежде всего, изменения количеств тепла, влаги и их соотношения. М.И. Будыко доказал тесную связь географических зон с двумя климатическими параметрами — радиационным балансом земной поверхности и радиационным индексом сухости. Из этого можно заключить, что основным фактором формирования географических зон является климат.

По относительной устойчивости климата отдельных участков земной поверхности выделяют тринадцать климатических поясов: экваториальный, два субэкваториальных, два тропических, два субтропических, два умеренных, два субарктических, два арктических.

Географические пояса. Климатические пояса служат основой для выделения географических поясов — наиболее крупных зональных подразделений географической оболочки. По числу и даже по названиям географические пояса совпадают с климатическими. Однако границы этих поясов совпадают не везде, что связано с более сложной организацией географических поясов, включающих почвенно-растительный покров, геоморфологические, биохимические, гидрогеологические объекты, которые могут не соответствовать всем параметрам современного климата.

В пределах географических поясов выделяют географические, или ландшафтные зоны, которые характеризуются господством одного зонального типа ландшафта. Зоны в меньшей степени, чем пояса, имеют широтную ориентацию и протяженность, так как условия увлажнения обусловлены не только климатическими факторами, но и структурой самого ландшафта. Ландшафтными географические зоны впервые назвал Л.С. Берг, утверждавший, что их границы подвижны, т. е. с течением времени меняют свое положение на земной поверхности. Причиной такого перемещения он считал коренные изменения климата в прошлом. Изменения, связанные с перемещением зон, охватывают кору выветривания, почвы, растительность и животный мир и естественно меняют облик ландшафта. Палеогеографические исследования подтверждают факт смещения ландшафтных зон в ходе геологического времени и климатическую обусловленность их формирования и подвижности.

Периодический закон географической зональности. Климатические условия географических поясов и зон можно оценить с помощью показателей: коэффициента увлажнения Высоцкого—Иванова к = Х/Е0 (где X— годовая сумма осадков, мм; Е0 — годовая испаряемость, мм) и радиационного индекса сухости Будыко r= R/LX ( где R — годовой радиационный баланс; LX— энергия, которая потребовалась бы на испарение выпадающих атмосферных осадков). Значения показателей определяют характер увлажненности ландшафтов: аридный (засушливый) или гумидный (влажный). Чтобы отобразить влияние ландшафтных условий на увлажнение, А.М. Рябчиков предложил соотносить радиационный баланс не с атмосферными осадками (они в большей мере зависят от циркуляционных процессов, чем от структуры ландшафта), а с валовым, или продуктивным, увлажнением W, которое равно количеству осадков минус поверхностный сток.

Значения показателей могут повторяться в зонах, относящихся к разным географическим поясам. При этом величина к определяет тип ландшафтной зоны, а величина r — конкретный характер и облик зоны. Например, к >3 во всех случаях указывает на тип пустынных ландшафтов, но в зависимости от величины R облик пустыни меняется: при r =0—50 ккал/см2 в год — это пустыня умеренного климата; при r= 50—75 ккал/см2 в год — пустыня субтропического климата и при r >75 ккал/см2 в год — пустыня тропического климата. Если к близок к 1, это значит, что осадков выпадает столько же, сколько может испариться.

В низких широтах (примерно от 0° до 30°) фактором, лимитирующим произрастание растительности, является влага. Здесь наблюдаются следующие зоны: влажные экваториальные леса, тропические леса, листопадные леса, саванны, опустыненные саванны, тропические пустыни. В высоких широтах (примерно от 65° и выше) лимитирующим фактором является теплота. Здесь сформировались лесотундры, тундры, арктические пустыни. Между высокими и низкими широтами в условиях субтропических и умеренных поясов наблюдаются разные сочетания тепла и влаги. Так, пустыни (субтропические и умеренного пояса) находятся в тех районах, где увлажнение недостаточное (к< 1, r> 1), а влажные субтропические, широколиственные, смешанные леса и тайга сформировались в районах с хорошим увлажнением (к и r близки к 1).

Изложенные закономерности справедливы для равнинных территорий. В горных районах с высотой понижается температура, изменяется количество осадков (обычно увеличивается до определенных высот, а затем уменьшается). Имеют значение крутизна и экспозиция склонов, а также облачность. Соответственно этому изменяются и водно-тепловые условия, что приводит к смене ландшафтных зон с высотой. Закономерная смена природных условий и ландшафтов с высотой получила название высотной поясности (высотная зональность, вертикальная зональность).

Зоны на равнинах и высотные пояса формируют своеобразную систему. Например, зона арктических (полярных) пустынь на уровне моря находится на широте 65 — 85°, а в более низких широтах она возможна лишь на определенной высоте в горах. В реальности сплошного распределения зон от уровня моря до снеговой границы не существует, имеются лишь фрагменты такой картины в разных горных системах.

Общие черты циркуляции атмосферы, управляющие переносом влаги, необходимо учитывать при делении географических поясов на секторы. Выделяют три сектора: два океанических и один континентальный, или западный, центральный и восточный. В холодном поясе секторы не выявляют, так как морская и континентальная области не имеют резких различий. По классификации А. Г. Исаченко, целесообразно выделение пяти секторов: западный приокеанический, восточный приокеанический, слабо- и умеренно континентальный, континентальный, резко континентальный.

Понятие «ландшафт» относится к физико-географическому комплексу, т.е. к сочетанию взаимодействующих природных компонентов — геологического строения, рельефа, атмосферного воздуха, вод суши, почв, растительности и животного мира. Под ландшафтом обычно понимают территорию, природные условия которой относительно однородны. К одному ландшафту можно отнести территории, разобщенные между собой, но сходные по природным характеристикам. Помимо ландшафтов суши есть попытки выделения подводных ландшафтов — аквальных природных комплексов. Типы ландшафтов определяют своеобразие природных, или ландшафтных, зон — крупных подразделений земной поверхности внутри географических поясов.

Названия природных зон даны по ландшафтно-ботаническому признаку, так как растительный покров — это и «одежда» ландшафта, придающая ему характерный облик, и чрезвычайно чуткий индикатор разнообразных природных условий. Необходимо, однако, учитывать, что:

1) ландшафтная зона не идентична никакой другой зоне, выделяемой по отдельному компоненту ландшафта (в зоне тундр помимо тундровой растительности по долинам рек растут леса, в зоне степей почвоведы выделяют и зону черноземов, и зону каштановых почв);

2) облик ландшафтной зоны создан не только современными природными условиями, но и всей историей формирования;

3) зональность Южного полушария не является зеркальным отражением зональности Северного полушария.

Классификации ландшафтных зон и ландшафтов Земли многоуровенны и неоднозначны по содержанию. В качестве примеров приведем некоторые из них.

Ландшафтные зоны Земли (по С. В.Калеснику):

1. Ландшафтные зоны северного холодного пояса.

1.1. Зона арктических пустынь.

1.2. Зона тундры.

1.3. Зона лесотундры и редколесий.

2. Ландшафтные зоны южного холодного пояса.

2.1. Зона антарктической ледяной пустыни.

2.2. Тундрово-луговая зона.

3. Ландшафтные зоны умеренных поясов.

3.1. Зона тайги.

3.2. Зона смешанных и широколиственных лесов.

3.3. Зона лесостепей.

3.4. Зона степей.

3.5. Зона полупустынь.

3.6. Зона пустынь.

3.7. Средиземноморская зона.

3.8. Зона субтропических вечнозеленых исмешанных лесов.

3.9. Зона субтропических саванн.

3.10. Зона субтропических пустынь иполупустынь.

4. Ландшафтные зоны жаркого пояса.

4.1. Зона тропических лесов.

4.2. Зона тропических саванн.

4.3. Зона тропических пустынь.

4.4. Зона влажных экваториальных лесов (тропических дождевых лесов — гилей).

Ландшафтные зоны Земли (по А. Г. Исаченко):

1) лесотундровая; 2) приокеанические луговые и лесолуговые; 3) суббореальные широколиственно-лесные (включая переходные к субтропическим); 4) субтропические влажные лесные; 5) средиземноморские; 6) субтропические лесостепные, степные, саванновые; 7) тропические и субэкваториальные влажные лесные; 8) суббореальная полупустынная Южного полушария; 9) бореальные и суббореальные влажные лесные Южного полушария.

Типы ландшафтов суши (по А. Г. Исаченко):

1) арктические и антарктические; 2) субарктические (тундровые); 3) бореально-субарктические (лесотундровые); 4) бореальные, переходные к субарктическим (луговые и лесо-луговые); 5) бореальные (таежные); 6) бореально-суббореальные (подтаежные); 7) суббореальные гумидные (широколиственно-лесные); 8) суббореальные гумидные, переходные к субтропическим (субсредиземноморские и др.); 9) суббореальные семигумидные (лесостепные и аридно-лесные); 10) суббореальные семиаридные (степные); 11) суббореальные аридные (полупустынные); 12) суббореальные экстрааридные (пустынные); 13) субтропические гумидные (вечнозеленые лесные); 14) субтропические семигумидные (средиземноморские); 15) субтропические семиаридные (лесостепные, саванновые, степные); 16) субтропические аридные (полупустынные) и экстрааридные (пустынные); 17) тропические экстрааридные (пустынные); 18) тропические и субэкваториальные аридные и семиаридные (саванновые, редколесные, сезонновлажные лесные); 19) тропические и субэкваториальные гумидные (лесные); 20) экваториальные гумидные (лесные).

Географическая поясность Мирового океана выражена более четко, чем на суше, благодаря большей однородности океанической поверхности и ограниченному воздействию такого мощного возмущающего фактора, как рельеф (рельеф морского дна влияет на зональность в условиях шельфа). Районирование Мирового океана проводится по распределению водно-тепловых условий акваторий и здесь также выделяют пояса и зоны (табл. 6.1). Наряду с водно-тепловыми условиями, важным фактором географической зональности в океане является система постоянных ветров и морских течений, обусловленная распределением атмосферного давления. Эти особенности проявляются через комплекс климатических, гидрологических, биологических и других характеристик океаносферы, которые составляют понятие «водная масса». Таким образом, районирование Мирового океана возможно и по распределению водных масс. Границы поясов океаносферы прослеживаются по конфигурации океанических фронтов, разделяющих водные массы. Районирование поверхности и глубин океана проводится раздельно.

Первая схема районирования поверхности Мирового океана была предложена Д.В. Богдановым и включала 11 поясов (см. рис. 6.1). С.В. Калесник ограничился выделением восьми поясов: северных ледовитых морей, северного умеренного, циркуляции северных пассатных течений (включая субтропические и тропические пояса Д.В. Богданова), коралловых морей (в основном соответствует экваториальному и субэкваториальному поясам), циркуляции южных пассатных течений, южных морских прерий (аналогичный умеренному поясу Южного полушария), средней зоны Южного океана (субантарктический пояс Д.В. Богданова) и южных ледовитых морей. В схеме С.В. Калесника обращает на себя внимание асимметрия структуры Северного и Южного полушарий, которая существенно проявляется в циркуляции вод Мирового океана. А. М. Рябчиков и другие московские географы выделяют 7 географических поясов в Северном полушарии: арктический, субарктический, умеренный, субтропический, тропический, субэкваториальный и экваториальный. Близкий состав поясов отмечен и для Южного полушария, где они менее четки и местами почти сливаются (например, субантарктический и южный умеренный).

Таблица 6.1. Термические условия зональности Мирового океана (по К.М.Петрову)

Географические пояса (I—V) и зоны (1 —13) Радиационный баланс, ккал/см2 в год Температура воздуха, °С Температура воды, ° С
зима лето зима лето
I. Холодный северный          
1. Арктическая <10 <0 0-5 <0 <0
2. Субарктическая 10-20 <0 5-10 0-5 5-10
П. Умеренный северный          
3. Холоднобореальная 20-60 0-5 10-15 5-10 10-15
4. Теплобореальная 60—80 5-10 15 — 20 10-15 15-20
5. Субтропическая 80—100 10-15 20-25 15-20 20-25
III. Жаркий          
6. Северная тропическая >100 15-20 >25 20-25 >25
7. Экваториальная >100 20-25 >25 20-25 >25
8. Южная тропическая >100 15-20 20-25 15-20 20-25
IV. Умеренный южный          
9. Субтропическая 80—100 10-15 15-20 10-15 15-20
10. Теплонотальная 60-80 5-10 10-15 5-10 10-15
11. Холоднонотальная 40-60 0-5 5-10 0-5 5-10
V. Холодный южный          
12. Субантарктическая 10-20 <0 0-5 <0 0-5
13. Антарктическая <10 <0 <0 <0 <0
Физико-географические зоны дна океана впервые были выделены О. К. Леонтьевым в 70-х годах XX в. Он считал, что донная зональность через состав отложений и донной фауны, который зависит от поступления с поверхности отмершего органического вещества (детрита), опосредованно отражает поверхностную зональность. О. К.Леонтьевым были обособлены семь физико-географических зон (ранга географического пояса): экваториально-тропическая, две умеренные, две субполярные и две полярные. Установлено, что подводные ландшафты отличаются единством зональных, азональных и вертикальных характеристик, которые зависят от глубины океанского или морского бассейна.

Фундаментальное различие поверхности суши и океана, проявляющееся на уровне географической зональности, состоит в том, что пояса и зоны суши в большей мере историчны, т. е. их структура сложилась на протяжении достаточно длительного (примерно 104 лет) времени. Поясно-зональная структура в океане существенно отличается от наземной за счет особенностей гидросферы и своеобразия животного и растительного мира. Пояса и более дробные подразделения океана зависят от изменчивости гидроклиматических факторов, инерционность которых значительна.

Что же касается азональных структур Мирового океана, здесь следует прежде всего обратить внимание на роль течений, трансформирующих водные массы. Так, холодные течения, направленные к экваториальному поясу, глубоко внедряясь в теплые воды океана, нарушают его поверхностную и глубинную поясность. Сходное влияние оказывают и теплые течения (например, Гольфстрим и Северо-Атлантическое течения для северо-запада Атлантического и части Северного Ледовитого океанов). С изменением температуры вод связано разнообразие биогенных элементов и, соответственно, донных отложений. Определенную азо-нальность, или провинциальность создают разные типы контактов океана с сушей и ее ландшафтные особенности (различные берега, морфоскульптура и др.), которые нарушают субширотную ориентацию и способствуют образованию обособлений прибрежной полосы.

Зональность Мирового океана — главная закономерность распределения ландшафтов поверхностной толщи океана, дна, морских мелководий и связанных с ними сообществ гидробионтов. Однако действие закона зональной дифференциации Мирового океана контролируется толщей воды. Поверхностные и глубинные ярусы океана отличаются особенностями географической зональности. Наблюдается расслаивание зональной структуры географической оболочки на зоны водной поверхности и морского дна. В пределах морских мелководий границы поверхностных и подводных зон сливаются. Глубже такого соответствия, как правило, не наблюдается.

Геосферы частично проникают, а в некоторых случаях целиком пространственно вложены друг в друга. В вертикальном распределении их свойств наблюдаются различия, следствием которых является вертикальная поясность (ярусность) как самих геосфер, так и географической оболочки в целом.

В соответствии с гравитационной дифференциацией нижний ярус географической оболочки занят земной корой, состоящей из наиболее плотного вещества. Земная кора также стратифицирована по удельному весу: верхняя часть представлена слоем осадочных пород, который с глубиной сменяется гранитным (на материках) и базальтовым слоями. Верхний ярус и на материках, и над океанами составляет атмосфера. Эту схему осложняет присутствие в некоторых районах земного шара морских и материковых льдов, занимающих место в соответствии с их удельным весом. Живые организмы не образуют сплошного слоя, но располагаются «на своем месте» — в почве, воде и воздухе.

Ярусность проявляется в вертикальном строении всех геосфер. На суше по характеру рельефа выделяют ярусы низменных равнин, низкогорный, среднегорный и высокогорный. Ярусность атмосферы проявляется в высотном изменении температур, влажности и давления воздушных масс. Не менее отчетлива ярусность Мирового океана, наблюдаемая в подразделении водной толщи в соответствии со свойствами слагающих ее водных масс. Она согласуется с условиями обитания гидробионтов, создавая известные батиметрические зоны водных бассейнов.

Гравитационная стратификация нарушается множеством отклонений, что подчеркивает сложность взаимодействий. Отклонения проявляются в наличии в земной коре и почве воды и воздуха, в атмосфере — аэрозолей и капелек воды и др. Это свидетельствует о том, что существуют процессы, определяющие перемещение вещества против силы тяжести.

Наиболее наглядно вертикальная стратификация проявляется в горах, где изменение типов ландшафтов происходит по закону высотной поясности, установленному В.В.Докучаевым. Сочетания высотных ландшафтных зон и поясов, их набор на склонах горных хребтов различны и существенно зависят от положения гор в широтной зоне и долготном секторе.

В основе построения мира находится симметрия — правильное расположение объектов, поскольку исходные первоосновы мира (поля, тела, потоки) симметричны. Но так как интенсивность связей в различных частях географической оболочки неодинакова, наблюдаются очаги взаимодействия, в пределах которых связанность явлений больше, чем за их пределами. Наблюдается также несимметричность взаимодействий: в некотором направлении воздействие сильнее, чем в обратном. Таким образом, одной из основных закономерностей строения географической оболочки является асимметрия.

Рис. 6.7. Соотношение площадей суши (заштриховано) и океана по географическим широтам, млн км2

Глобальная асимметрия является следствием неравномерного распределения различных масс вещества и их разных состояний. Главная особенность строения земной поверхности — асимметрия в распределении материковых и океанических масс: суша концентрируется преимущественно в Северном полушарии, где она занимает 39%, в Южном полушарии на ее долю приходится всего 19 % (рис. 6.1). Асимметрия Северного и Южного полушарий в распределении материков и океанов проявляется в асимметричности типов земной коры, географических зон, высот и глубин (рис. 6.2). Среди других примеров асимметрии планеты С.В. Калесник называет: полярную асимметрию Земли, асимметрию фигуры Земли, планетарные распределения барического поля и систем ветров, температуры воздуха, воды, океаническую циркуляцию, асимметрию криогенных областей.

Рис. 6.2. Сравнение относительных высот земной коры (гипсографическая кривая Земли)

Локальная асимметрия присутствует в любой геосфере и на любом иерархическом уровне: меандры и ринги в океане, циклоны и антициклоны в атмосфере, рельеф земной поверхности и морского дна, распространение фауны и флоры и др. Окружающий нас мир целиком асимметричен и состоит из отклонений (аномалий), что проявляется в многообразии и неповторимости географических процессов и явлений.

Обобщая многочисленные факты влияния географических объектов на окружение, А. Ю. Ретеюм сформулировал концепцию о нуклеарных (ядерных) структурах. Эти структуры представляют собой некое единство объекта и парагенетически связанного с ним окружения.

В качестве ядровых (собирающих вокруг себя) выступают самые разнообразные по размерам, происхождению, составу и структуре тела (А.Ю. Ретеюм относит к ним также поля, волны, знаки, идеи). Это материки, океаны, ледники, горные хребты, магматические тела, озера, холмы, города, лесные массивы и др.

Каждое тело в силу его свойств и местоположения определяет расположение вокруг себя многих объектов. Например, горный хребет влияет на распределение атмосферных осадков в пределах нескольких десятков и даже сотен километров. Это выражается в увеличении количества осадков над самим хребтом и в прилегающих районах (предгорьях, межгорьях, долинах). Если горный хребет стоит на пути влагонесущих потоков, то возникает асимметричное поле: на наветренных склонах осадков выпадает больше, чем на подветренных. Зонирование возникает также в поле влияния городов: от почти полного исчезновения естественной среды в самом городе до перехода к слабо измененным ландшафтам.

Одной из разновидностей нуклеарных структур является циркумконтинентальная зональность. Каждый континент представляет собой гигантскую материковую глыбу, окруженную водами Мирового океана. Многие характеристики подводных ландшафтов прямо или косвенно определяются расстоянием от материка. Например, распределение донных отложений и биомассы. Ближе к материкам откладываются чаще всего осадки терригенного происхождения (обломки пород и минералов, поступающих с суши), которые сменяются преимущественно биогенными илами. Центральные части океанического дна покрыты полигенными осадками, состоящими прежде всего из глубоководных красных глин. Наибольшая биомасса характерна для прибрежной зоны, наименьшая — для центральных частей океана.

Своеобразными нуклеарными структурами можно считать кольцевые (криволинейные) и вихревые (овоидные) образования, которые имеют тектоно-геологическую основу и выражены в ландшафтах. Вероятно, к таковым же структурам относятся огромные вихри вод Мирового океана, мигрирующие в пространстве и во времени.

Географическая оболочка — это гигантская контактная зона, с одной стороны, твердой части Земли, с другой — атмосферы, океаносферы и Космоса. Внутри географической оболочки существуют контактные зоны разного пространственного уровня — от глобальных (граница материк—океан, атмосферные и океанические фронты, приледниковые зоны и кромки материковых или морских льдов) до локальных (берега рек, опушки леса, края ледников и др.). На каждом пространственном уровне взаимодействие контактирующих объектов имеет свою специфику, обусловленную особыми свойствами контактных зон. Контактные зоны — это зоны взаимодействия обычно различных сред или состояний вещества, для которых характерны определенные процессы и явления.

В зонах контактов повышается интенсивность процессов (в сотни и тысячи раз по сравнению с центральными частями тел) и возникает избыточная поверхностная энергия. Рассматривая активные поверхности океана, Т.А. Айзатуллин и другие исследователи отмечают, что наиболее впечатляющими на фоне инертности внутренней массы являются пограничные эффекты в твердых телах. Пограничная поверхность вода—твердое вещество (особенно вода— измельченное твердое вещество) составляет самую большую по суммарной площади поверхность раздела фаз в океане. Второе место по площади занимает граница вода—живое вещество. На 1 м2 пограничной поверхности вода—дно (и, соответственно, на 1 м2 поверхности вода—атмосфера) приходится около 1000 м2 рассеянной в толще воды пограничной поверхности вода—детрит, около 100 м2 поверхности вода—бактерии и около 10 м2 поверхности вода—оливково-зеленые клетки.

По мнению ученых, молекулярное состояние вещества у поверхности и в глубине однородного твердого тела можно сравнить с состоянием войны и мира, полосой фронта и тыловой зоной. У поверхности идет бой за существование структуры вещества, происходят химические реакции, создаются и разрушаются молекулы, рвутся и возникают взаимные связи, рассеянными в микропространстве «вспышками» выделяется и поглощается энергия.

Одной из самых активных контактных зон географической оболочки является береговая зона — побережье с прилегающими частями океанов, морей, рек и других водоемов. Берег в целом следует назвать множественной границей, на которой контактируют тела разной вещественной природы: вода—воздух, вода—суша, вода— дно, вода — взвешенные вещества, суша—воздух, вода —живое вещество и др. Для береговой зоны свойственно большое разнообразие растительного и животного мира, форм рельефа, геологических отложений. Продолжением побережья в море является шельф. В его пределах добывается основная масса морепродуктов, большое количество нефти, газа, серы, железной руды, россыпных полезных ископаемых, песка, гравия и др. Наконец, побережье привлекательно в эстетическом отношении, принося существенный доход многим странам за счет туристской и рекреационной Деятельности.

На границе океана и атмосферы в верхнем миллиметровом слое («скин-слое») океана происходит множество сложных процессов. С его поверхности испаряется вода, и, следовательно, осуществляется теплоперенос скрытой теплоты парообразования в атмосферу. В связи с испарением здесь возникает наибольший во всем океане градиент плотности за счет выпаривания и концентрации солей. Через верхний слой в океан поступает диоксид углерода, т. е. реализуется функция океана как планетарного буфера в карбонатной системе океан—атмосфера—зеленый покров Земли—техногенез. Здесь же сосредоточено максимальное количество простейших живых организмов — нейстона, основного продуцента биомассы океана. Установлено, что нейстон, перемешивая воду своими жгутиками, может троекратно увеличивать испарение воды с поверхности. Предположительно, но очень вероятно, что он способен активизировать тем же способом и газообмен океана с атмосферой.

Своеобразными контактными зонами являются приледниковые области и кромки льда в океанах. Для них характерны скопления жизни. Так, концентрация организмов в ледовом пограничном слое океана в 10—1000 раз выше, чем в подледной воде. У кромки льда развитие фитопланктона начинается гораздо раньше, чем в открытом океане.

Разнообразие физико-географических характеристик в различных частях океана оценено Т.А. Айзатуллиным и В.Л.Лебедевым. Величина разнообразия, рассчитанная по соответствующей формуле, достигает (в относительных единицах): на побережье — 56—110, острове — 30—42, океанических фронтах — 20—30, у кромки льда — 20.

К активным зонам относятся и очаги взаимодействия энерго- и влагообмена, осуществляемые разными природными процессами и явлениями. Это реки, эстуарии, сейсмически активные районы, места промышленных сбросов, атмосферные и океанические фронты.

Активными точками можно назвать участки интенсивного взаимодействия тел различной природы, размеры которых настолько малы, что на карте они могут быть отмечены точками: подземные и подводные источники, гейзеры, вулканы, устья рек, каньоны, некоторые проливы.

Интенсивность химического и физического взаимодействия между телами в области контакта убывает от поверхности контакта по логарифмическому закону — сначала (в пределах миллиметров и сантиметров) очень быстро, а затем все медленнее. На некотором расстоянии градиенты параметров взаимодействия становятся незначительными, соизмеримыми с градиентами, присущими инертному слою среды (это хорошо видно на примере контакта Космоса и Земли).

Контактным зонам свойственен краевой эффект, проявляющийся в обогащении их природных ресурсов (флоры, фауны) за счет проникновения объектов из соседних зон (это явление известно также как феномен опушки). Формирующиеся как бы промежуточные полосы геосистем (ландшафтов) носят название маргинальных. Такой характер имеют не только природные, но и природно-антропогенные контактные зоны.

Таким образом, контактные зоны являются наиболее активными и продуктивными участками географической оболочки.

Любая геосистема обладает свойствами дискретности и континуальности. Дискретность геосистемы состоит в том, что каждая из них занимает определенную площадь и объем, имеет свои свойства и отделена от соседних систем границами, которые могут быть линейными или расплывчатыми, четко выраженными или затушеванными, стабильными или мобильными. Континуальность геосистем проявляется в непрерывности их распространения, особенно в тех случаях, когда между ними или их подразделениями существуют более или менее широкие области перехода для обмена веществом и энергией.

Барьерами называют участки географической оболочки, которые оказывают существенное влияние на поля и потоки вещества и энергии, задерживая, трансформируя, усиливая или ослабляя их. Барьеры — характерная черта окружающего мира. Повышенная концентрация некоторых типов вещества на барьерах представляет особый интерес и стимулирует их изучение.

По своей природе барьеры можно подразделить на механические, физико-химические, биогеохимические и техногенные (рис. 6.9).

Механические барьеры разрушают географический объект или препятствуют его распространению. Например, горные системы (Анды, Кордильеры, Гималаи, Альпы, Кавказ, Урал и др.) представляют наиболее масштабные и заметные естественные барьеры. Такие барьеры трансформируют воздушные массы (что проявляется в увеличении количества осадков на наветренном склоне гор и уменьшении — на подветренном), расчленяют почвенно-растительный покров, определяют тепловой режим территории (вследствие разной экспозиции склонов). Любое, даже незначительное повышение рельефа изменяет скорость ветра, что в свою очередь обусловливает перераспределение снега. По отношению к водным потокам, препятствиями являются не только повышения, но и понижения рельефа: водный поток, дойдя до понижения, меняет свое направление и начинает двигаться вдоль него. Осевые линии горных хребтов и даже водораздельные линии пологих междуречий вынуждают выпадающие атмосферные осадки растекаться в противоположные стороны.

Рис. 6.3. Геохимические барьеры (по А.И.Перельману): 1 — механические; 2 — физико-химические; 3 — биогеохимические; 4 — техногенные; 5 — глубина проникновения кислородных вод в литосферу, зависящая от климата и геологического строения; А — кислородные; В, С — восстановительные барьеры, приуроченные к границе проникновения кислородных вод в литосферу. Цифра справа от буквы обозначает класс вод (3 — нейтральный, 6 — кислый)

Физико-химические барьеры изменяют свойства контактирующих объектов, вызывая эмерджентность (например, смешение различных воздушных масс в зоне атмосферного фронта) или препятствуя обмену между веществом и энергией вследствие их различий (запрещенный парагенезис). Среди физико-химических барьеров наиболее заметны геохимические барьеры — участки земной коры, где на коротком расстоянии происходит смена природной обстановки с изменением свойств среды (окислительная — восстановительная, кислая — щелочная и др.), что определяет интенсивность миграции химических элементов и их возможные концентрации. Нередко на барьерах формируются месторождения полезных ископаемых (железа, марганца, серы и др.). Изучение геохимических барьеров помогает понять закономерности размещения полезных ископаемых и распространения загрязнителей.

На земной поверхности широко распространены биогеохимические барьеры (кислородные, глеевые, сероводородные и др.), связанные с соответствующими средами в географической оболочке.

Возникновение барьеров связано также с щелочно-кислотными условиями, которые определяются концентрацией ионов водорода в воде. При большой величине рН формируются щелочные барьеры, на которых аккумулируются преимущественно катионогенные металлы. При малой величине рН образуются кислые барьеры, на которых накапливаются анионогенные элементы (неметаллы и некоторые металлы).

Техногенные барьеры отражают результат антропогенного вмешательства и представлены плотинами, дамбами и другими объектами.

Барьеры возникают также при смене типов подстилающей поверхности (смена суши морем и наоборот, степной растительности — лесной, орошаемого поля — неорошаемым и др.), которая приводит к трансформации и изменению структуры ландшафтов.

Специфическим барьером является экватор — невидимая граница, от которой отклоняющая сила вращения Земли (сила Кори-олиса) направлена в разные стороны: в Северном полушарии — вправо, в Южном — влево.

Роль естественных барьеров в органическом мире. Биота наиболее чувствительна к изменчивости окружающей обстановки. Географическое распространение видов тесно связано с их экологической пластичностью. На пути неограниченного увеличения численности популяций и стремления расширить ареал встают внешние факторы: географические, экологические и биологические, которые могут представлять для биоты естественные барьеры.

В качестве географических факторов выступают крупные элементы строения земной поверхности, играющие роль преград на пути расселения организмов. Для сухопутных растений и животных такими преградами являются горные хребты, океаны и моря, проливы. Для водных организмов барьером служат обширные пространства суши или опресненные участки в морях и эстуариях.

Физико-химические параметры внешней среды, играя роль экологических факторов, в то же время могут выступать в качестве крупных естественных барьеров. Биологические виды тропических лесов, живущие в условиях теплого и влажного климата, не переходят в жаркие и сухие пустыни. Преградой на пути распространения деревьев на север в основном является изотерма самого теплого месяца в 100 С. Ниже этой температуры деревья, как правило, расти не могут, что является одной из причин безлесья тундры. Аналогичные барьеры можно встретить в океане, где они носят названия гидрологических фронтов, определяемых по распределению температуры воды, солености и других элементов. Многие промысловые объекты (сайра, скумбрия и др.) скапливаются именно вблизи океанических фронтов или мигрируют вдоль их границ, придерживаясь определенной изотермы.

В роли биологических факторов выступают видовые, главным образом конкурентные отношения и хищничество (например, на мидиевых или устричных плантациях, когда моллюски противостоят агрессии со стороны морских звезд).

Ряд природных барьеров организмы преодолевают, другие — нет. Преодоление естественных барьеров происходит за счет повышения сопротивляемости организма, его адаптации (например, клопа к дусту), физического разрушения препятствия. Установлено, что мигрирующие на нагул или нерест рыбы (сайра, дальневосточные лососи) часто «ждут» благоприятной океанологической или астрономической ситуации перед проливом или гидрологическим фронтом, чтобы войти в «свой» район или пересечь фронтальную зону.

Ландшафт — одно из фундаментальных понятий современной географии, в основе которого лежит идея о взаимосвязи и взаимообусловленности всех природных явлений земной поверхности. Формы рельефа, горные породы, климаты, поверхностные и подземные воды, почвы и сообщества организмов взаимосвязаны как в своих пространственных изменениях, так и в историческом развитии. Они образуют отнюдь не случайные сочетания, а закономерные природные (территориальные или аквальные) комплексы. Эти комплексы являются результатом процессов, происходящих в конкретных ландшафтных системах разного ранга. Каждая ландшафтная система — своего рода «фабрика», которая производит физико-географические продукты: почву, кору выветривания, фито- и зоомассу, грунтовый и речной стоки и другие компоненты. Она поглощает солнечную радиацию и трансформирует ее в энергию природных процессов, осуществляет влагообмен, разрушение и минерализацию органического вещества и многие другие процессы.

Климатические и гидрологические элементы определяют мобильность наземных ландшафтов, выполняют обменные и транзитные функции. Они связывают данный ландшафт с другими ландшафтными системами, а также с внешними средами: атмосферой, гидросферой и литосферой. Под влиянием воздушных и водных потоков границы ландшафтов приобретают некоторую расплывчатость. Биотические компоненты также выполняют функцию переноса вещества и энергии, но их значение проявляется главным образом в процессах избирательного поглощения и накопления химических элементов, создании и разрушении органического вещества, в фазах жизненного цикла организма.

Функции и значение компонентов ландшафта различны, но в то же время все компоненты равноценны. В.Н.Солнцев сформулировал принцип равной важности ландшафтных компонентов: «У каждого компонента неповторимая биография и уникальная специальность в ландшафте». Иногда в формировании конкретного ландшафтного комплекса приоритет принадлежит одному из факторов: климатогенному, тектоногенному, вулканогенному, криогенному, эоловому, биогенному и др. Например, тектоногенный ряд включает такие классы ландшафтов, как горные, предгорные, равнинные, межгорных котловин и др. Особое место занимает ряд антропогенных ландшафтов: сельскохозяйственный, горно-про-мышленный и др.

Приспособление геокомпонентов в рамках ландшафтных систем происходит вероятностно-статистическим путем. В каждый момент времени характеристики ландшафтных компонентов могут принимать различные значения: постоянно изменяются температура и влажность воздуха, скорость ветра, состояния грунта и другие параметры среды. Вследствие «притирки» разномасштабных компонентов формируется интегрированная ландшафтная структура, инвариантная в довольно широком диапазоне изменений внешней среды. Несмотря на выраженную изменчивость средо-образующих факторов, главные компоненты ландшафтов — почва, растительность, рельеф, геохимическая обстановка — сохраняются на протяжении долгого времени.

Состояние ландшафтов. Ландшафтные системы находятся в определенном состоянии, которое описывают набором характеристик: температура и влажность воздуха, почвы, фенологические фазы доминирующей флоры, наличие или отсутствие снегового покрова и др. Параметры, характеризующие состояния ландшафтов, можно условно подразделить на две категории: средообразующие (воздух, вода, горные породы, биота) и остальные компоненты, определяющие характер протекания физико-географических процессов в данной обстановке. Состояние ландшафта зависит от свойств и элементов комплекса, сохраняющихся на протяжении конкретного отрезка времени.

Состав ландшафтов. Ландшафтные системы образуют ландшафтную сферу — часть географической оболочки, в которой наиболее активно взаимодействуют геосферы. Эта часть соответствует приповерхностному слою мощностью до первых сотен метров.

В географической оболочке ландшафтные системы образуют закономерные комбинации. Их чередование в пространстве связано с многими факторами: горными породами, рельефом, атмосферной и океанической циркуляцией, условиями поступления тепла и влаги, геохимической обстановкой и др. Например, водно-тепловой режим определяет главные закономерности распределения зональных типов ландшафтов. Средообразующие факторы, влияя на ландшафты, сами в той или иной степени являются продуктами их функционирования. Горные породы выполняют в ландшафте роль материальной основы. Скорость преобразования горных пород вследствие выветривания, денудации, метаморфизации, дезинтеграции, по сравнению с преобразованием других компонентов, невелика. Поэтому горные породы препятствуют быстрому изменению свойств ландшафта. Вместе с рельефом, который также медленно меняет свои характеристики, горные породы придают ландшафтам фиксированное положение и пространственную обособленность, связывая их с геологическим прошлым данной территории. У молодых ландшафтов зависимость от горных пород наиболее заметна. По мере развития ландшафта происходит формирование почв и коры выветривания, которые отражают условия тепло- и влагообмена, характер биогенной аккумуляции и другие процессы и явления, проявляющиеся на данном участке. Почва и кора выветривания как бы изолируют ландшафт от материнской породы, нивелируя его зависимость от нее.

Динамика ландшафтов обусловлена потоками вещества и энергии, которые объединяют компоненты ландшафта и его морфологические части (фации, урочища и др.) в единую систему. Совокупность процессов обмена и преобразования энергии и вещества в ландшафте называют функционированием ландшафта.

Ландшафт непрерывно изменяется. Некоторые изменения обратимы, цикличны и не приводят к преобразованию структуры ландшафта (например, сезонные ритмы). До тех пор пока подобные изменения повторяются из года в год, структура ландшафта остается неизменной. Такие динамические изменения подчеркивают устойчивость ландшафта, ибо свидетельствуют о его способности возвращаться к прежнему состоянию. Наряду с этим возможны эволюционные (необратимые) изменения, которые составляют сущность развития ландшафта и выражаются в перестройке его структуры.

Устойчивость ландшафта относительна, так как он развивается непрерывно, но с разной скоростью, и нужен более или менее длительный срок, чтобы его трансформация стала заметной. Развитие ландшафта могут стимулировать как внешние причины (тектонические движения, глобальные климатические изменения), так и внутренние (саморазвитие, в механизме которого особую роль играет эволюция растительного покрова и его взаимодействие с абиотическими компонентами). Устойчивость и изменчивость — два диалектически взаимосвязанных свойства ландшафта, познание которых имеет исключительно важное значение для прогнозирования развития ландшафта. Всем ландшафтным системам присущи ритмические колебания различной продолжительности.

Систематизация ландшафтов. В географии существуют два подхода к систематике ландшафтов. Один из них подсказывает сама иерархичность геосистем — это переход от ландшафта к укрупненным территориальным системам более высоких рангов — физико-географическим регионам того или иного порядка (областям, зонам, странам и др.). Такой подход называется физико-географическим районированием. При районировании не обязательно, чтобы объединяемые ландшафты были сходными. Главным критерием служит не сходство, а связь, пространственные отношения, территориальное единство составных частей и общность их исторического развития.

Другой подход — это объединение объектов по признакам качественного сходства, т.е. типологическая классификация. В такой системе сходство сохраняется на всех ступенях систематизации — типах, классах, видах и др. Различие будет лишь в степени этого сходства: общих признаков на низших ступенях больше, на высших — меньше.

При классификации ландшафтов, как и других объектов, неизбежно приходится выбирать общие признаки, отказываясь от особенностей каждого из них. При районировании на первый план выходит индивидуализация — каждый регион уникален, неповторим, и чем он сложнее, тем уникальнее. Каждому физико-географическому региону присваивается собственное название. Типологические же объединения ландшафтов не могут иметь собственных названий, это собирательные понятия.

Как в районировании, так и в типологии отражаются, хотя и по-разному, универсальные географические закономерности, которым подчинена ландшафтная дифференциация. В ландшафтной оболочке все природные процессы подчинены зональности, вследствие чего ландшафтная оболочка дифференцируется на систему региональных единиц высокого ранга — ландшафтных зон и подзон (часто выделяют еще более крупные широтные подразделения — физико-географические пояса: арктический, умеренный, субтропический и др.).

Другая универсальная закономерность ландшафтной оболочки — секторность, обусловленная взаимодействием океанов и материков. От соотношения океанических и континентальных воздушных масс зависит степень континентальности климата.

Гипсометрическое положение (высота территории над уровнем моря), крупные формы рельефа, петрографический состав горных пород, характер новейших и современных тектонических движений — все это создает наибольшую пестроту и контрастность в ландшафтной структуре. Подобные проявления часто называют азональными. Они лежат в основе выделения многих ландшафтов и таких региональных систем высокого ранга, как физико-географические страны. Каждая физико-географическая страна четко выделяется в орографической схеме материка, отличается строением фундамента, макрорельефом, климатическими особенностями, зональной структурой, а горные страны — еще и высотной поясностью.

Единицы ландшафтного подразделения. Классификации ландшафтных систем различны и многоуровенны и содержат известную долю субъективизма по числу выделов и терминологии.

Структура ландшафтов. Ландшафтные системы (ландшафты) представляют один из видов геосистем. Они характеризуются относительно однотипными взаимодействиями компонентов. В сложной иерархии геосистем различают три главных уровня:

1. Локальный уровень образуют геосистемы, формирование которых связано с местными факторами (например с отдельными элементами рельефа), имеющими небольшой радиус действия. Элементарная ландшафтная система и неделимая географическая единица называются фацией. Для фации характерна высокая однородность условий местоположения и местообитания (площадка одного склона с одинаковым уклоном, ровная междуречная поверхность, западина и др.), однородный микроклимат и водный режим, одна почвенная разность, один биоценоз. Она охватывает пространство от первых десятков метров в поперечнике до нескольких сотен метров.

Фации группируются в более сложные территориальные системы, которые при дальнейшей последовательной интеграции достигают принципиально нового уровня. Совокупность фаций, приуроченных к мезоформе рельефа, образует урочище. Примерами урочищ могут служить небольшой овраг, фации которого — два склона разной экспозиции и днище оврага, водораздельная поверхность между долинами небольших рек, берега морской бухты.

Урочища объединяются в местности, имеющие в поперечнике от нескольких тысяч метров до первых десятков километров. Они соответствуют комплексам преимущественно положительных или отрицательных форм рельефа (равнина, возвышенность).

Фация, урочище и местность — это единицы внутриландшафтного подразделения.

2. Региональный уровень образуют региональные системы (физико-географические районы, округа, провинции, области, подзоны, зоны), которые формируются в результате влияния факторов с более широким радиусом действия. Это неравномерное (по широте) распределение на земной поверхности солнечной радиации и тектонических движений, создающих многообразные структуры земной коры и формы макрорельефа (материковые выступы и океанические впадины, горы и равнины и др.).

3. Глобальный уровень представлен ландшафтной оболочкой, которая охватывает взаимопроникающие и постоянно взаимодействующие тропосферу, гидросферу, верхние слои литосферы и биосферу. Геосистемы регионального и локального уровней служат структурными частями ландшафтной оболочки.

Процессы, происходящие в ландшафтных комплексах низшего ранга (фациях и урочищах) интегрируются в пространстве по определенным законам, результатом чего являются процессы, характерные для более крупных систем (округов, областей, провинций, зон) и географической оболочки в целом. Поэтому знание процессов в локальных геосистемах необходимо для понимания планетарных процессов.

Классификация естественных ландшафтов (по А. Г.Исаченко) основана на сравнении их по многим критериям — генезису, структуре, функционированию, ландшафтообразующим факторам. Важнейшие функциональные черты ландшафтов (влагооборот, почвообразование, продуцирование биомассы, биогенный круговорот веществ, сезонная динамика и др.) определяются количеством тепла и влаги. Поэтому наиболее общие признаки ландшафтов, которые могут служить основанием для их объединения в высшие классификационные категории — типы ландшафтов, обусловлены сходством соотношений тепла и влаги. Распространение одних типов ландшафтов строго ограничено определенными секторами, другие имеют свои аналоги в различных секторах. Между типами ландшафтов, с одной стороны, и ландшафтными зонами и секторами — с другой, существует определенное соответствие. Обычно ландшафты разных типов сменяются постепенно, образуя на контакте переходы. Поэтому в качестве следующей классификационной ступени выделяются подтипы ландшафтов, имеющие подзональный характер. На следующей ступени классификационным критерием служит гипсометрический фактор, на основании которого выделяют классы ландшафтов, соответствующие двум главным высотным уровням — равнинному и горному. Классы ландшафтов подразделяются на подклассы, которые более детально отражают ярусную дифференциацию ландшафтов, постепенную трансформацию типичных зонально-секторных признаков с возрастанием высоты над уровнем океана. На нижних ступенях ландшафтной классификации определяющим критерием служит фундамент ландшафта — его структурные особенности, состав горных пород, формы рельефа. Через фундамент раскрываются и существенные генетические черты ландшафта. Учет этого критерия позволяет выделить наиболее дробные классификационные подразделения — виды ландшафтов. Ландшафтам одного вида присуще наибольшее число общих признаков, максимальное сходство в генезисе, характере компонентов, структуре, морфологии. Видовые признаки ландшафтов крайне многообразны. Конечными объектами описания чаще служат не виды ландшафтов, а их объединения, генерализованные в зависимости от изученности, характера распространения и др. Условно их называют группами ландшафтов. Согласно А. Г. Исаченко, на Земном шаре их число составляет более 600.

Среди других ландшафтных классификаций следует упомянуть 12-ступенную систему В. А. Николаева и классификацию Ф. Н. Милькова.

В качестве классификационных предлагаются и другие выделы в ландшафтных системах — природно-территориальные и природно-аквальные комплексы, иногда называемые также геокомплексами, со своим набором иерархических подразделений.

Классификация антропогенных ландшафтов. В настоящее время собственно природных ландшафтов осталось мало, большая их часть образовала антропогенные модификации, которые обычно называют природно-антропогенными ландшафтами. Согласно А. Г. Исаченко, современные ландшафты по степени изменения структуры естественных ландшафтов производственной деятельностью человека можно разделить на 6 основных групп:

1) практически неизмененные природные ландшафты (неэксплуатируемые леса и луга, ледники, полярные пустыни, высокогорные экстрааридные пустыни, многие заповедные ландшафты и др.);

2) слабоизмененные ландшафты, в которых основные природные связи не нарушены (рационально эксплуатируемые леса, пастбища, водоемы, национальные парки и др.);

3) нарушенные ландшафты вследствие длительного нерационального использования первичных ландшафтов (вторичные обедненные леса, мелколесья и кустарники, а также участки саванн, степей, лесостепей, полупустынь и пустынь, которые появились в результате подсечно-огневой и переложной систем земледелия, перевыпаса скота и др.);

4) сильно нарушенные ландшафты, или антропогенный бедленд, возникший в условиях неустойчивого равновесия природных процессов (эрозионный бедленд — участки катастрофического развития эрозионных процессов, антропогенный карст, участки вторичного засоления и заболачивания, заброшенные горные выработки и отвалы и др.);

5) преобразованные или культурные ландшафты (поля, сады, плантации многолетних культур, сеяные луга, лесонасаждения, оазисы в пустыне, зоны отдыха и др.), в которых природные связи целенаправленно изменены и эти изменения постоянно поддерживаются человеком путем различных мелиоративных работ, агротехнических приемов и др.);

6) искусственные ландшафты, созданные человеком на природной основе (города, села, промышленно-энергетические и транспортные узлы, наземные коммуникации, горные выработки, плотины, каналы и др.).

Географическая оболочка и ее составные части наряду с вещественно-энергетическими обладают и пространственно-временными характеристиками. На ранних этапах эволюции научной мысли пространство и время не отделялись от вещественной стороны окружающего мира. С развитием форм логического анализа они были выделены в особые категории и атрибуты материи, определяемые через размеры, форму, взаимное положение и ориентацию объектов, а также их возникновение и уничтожение, длительность и этапы существования, развития, ритмику, изменение свойств и др.


Дата публикования: 2014-12-08; Прочитано: 2172 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.034 с)...