Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Метафизика конца 19-го века как причина кризиса классической физики



В конце 19-го в. физика представлялась современникам почти завершенной. Казалось, что все физические явления можно свести к механике молекул или атомов и эфира. Эфир рассматривался как механическая среда, в которой разыгрываются электромагнитные явления. Один из крупнейших физиков 19 в. В.Томсон обращал внимание лишь на два необъяснимых факта – отрицательный результат опыта Майкельсона по обнаружению движения Земли относительно эфира и непонятную с точки зрения молекулярно-кинетической теории газов зависимость теплоемкости газов от температуры. Однако именно эти факты явились первым указанием на необходимость пересмотра основных представлений физики 19 в. Для объяснения этих и множества других фактов, открытых впоследствии, были созданы Теория относительности (А.Эйнштейн) и квантовая механика (М.Планк, А.Эйнштейн, Н.Бор, Л. де Бройль, Э. Шредингер и др.). Создание этих теорий знаменовало не просто этап в развитии физики, но смену всей ее методологии и даже идеологии.

Если законы классической физики 19-го и предыдущих столе-тий являлись теоретическим обобщением накопленных опытных данных, являлись естественным выводом из этого обобщения, то «законы» физики 20-го столетия являлись результатом постулирования отдельных положений, и это само по себе знаменовало переход от материалистической методологии к идеалистической, тем самым разрешение кризиса физики, который возник в конце 19-го столетия, просто отодвигалось.

Возникает вопрос, а нельзя ли было уже тогда, в конце 19-го столетия, когда возникли трудности с объяснением новых явлений, включая «отрицательные» результаты опытов Майкельсона и непонятную с точки зрения молекулярно-кинетической теории газов зависимость теплоемкости газов от температуры объяснить классическим способом? Так ли уж фатально необходимым был переход к порочной идеалистической методологии? Не были ли уже тогда допущены методологические ошибки в развитии физики?

Оказывается, ошибки были, они носили метафизический характер, связанный с упрощенным представлением об устройстве материи, но уже тогда можно было не отказываться от классической физики, требовался всего лишь иной взгляд на сущность физических процессов и на организацию материи.

Принципиальных методологических ошибок было допущено две, и обе носили метафизический характер.

Первой из них являлась идеализация полученных физикой и «хорошо проверенных», как тогда казалось, ее «законов». Примером такой идеализации является Закон всемирного тяготения И.Ньютона.

Как известно, Закон всемирного тяготения был опубликован Ньютоном в 1687 г. в «Математических началах натуральной философии». Этот закон являлся результатом математического обобщения трех законов небесной механики, разработанных И.Кеплером и изложенных им в 1609 г. в труде «Новая астрономия» (первые два закона) и в 1616 г. в 3-й главе 5-й книги «Гармония мира» (третий закон). Но сами эти законы Кеплер разработал на основе обработки обширных экспериментальных материалов известного датского астроном Т.Браге, умершего в 1601 г. и оставившего Кеплеру ценнейшие материалы своих многолетних наблюдений за поведением нескольких планет, в основном, Марса. Таким образом, законы и Кеплера, и Ньютона отражали внешнее явление – перемещение планет в пространстве, а не физическую сущность этого явления – причины, по которым происходит это движение. Как известно, все попытки Ньютона найти физическую причину Всемирного закона тяготения окончились неудачей, что нашло отражение в его знаменитой фразе «Гипотез я не измышляю!».

Но далее пошло триумфальное шествие ньютоновского Зако-на всемирного тяготения, особенно после того, как на его основе французским ученым А.Клеро был предсказан день появления кометы Галлея – 12 марта 1759 г., в который она и появилась.

Однако следует отметить, что любое явление имеет бесчисленное количество сторон, бесчисленное количество качеств и, следовательно, любая конкретная модель или конкретное описание любого явления есть лишь его некоторое приближение. Это относится и к математическому описанию. По мере накопления новых или уточнения уже известных фактов возникает необходимость их учета, что может вылиться не только в уточнение, но и в полный пересмотр исходной модели или математического описания. Это означает, что ни одно положение физики не может считаться окончательным и, тем более, идеальным, в том числе и Закон всемирного тяготения Ньютона. Идеализация этого закона уже в 19 в. привела к появлению известного гравитационного космологического парадокса Неймана-Зелигера: распространение Закона всемирного тяготения Ньютона на всю бесконечную Вселенную приводит к бесконечно большому значению гравитационного потенциала от всех масс звезд в любой точке пространства, и притяжение тел друг к другу оказывается невозможным.

Положение было бы иным, если бы Ньютону удалось найти физическую основу тяготения, его внутренний механизм. Тогда с самого начала было бы понятно, что в основу математического выражения Закона тяготения заложена определенная физическая модель, которая, конечно, тоже ограничена, но все же дает более точное представление о сути явления и поэтому появляется больше возможностей для более точного его математического описания. К сожалению, недостаточный общий уровень науки того времени не позволил Ньютону это сделать.

Чем же можно было объяснить «отрицательны» результат первых экспериментов Майкельсона 1881 г. и Майкельсона и Морли 1887 г.? Прежде всего, полным непониманием свойств самого эфира, перемещения которого в пространстве они искали. Сама постановка задачи Максвеллом по обнаружению эфирного ветра исходила из абсолютной неподвижности эфира в пространстве (гипотеза Френеля-Лоренца) и его идеальности, т.е. не сжимаемости и не вязкости и его всепроникновения. Достаточно нарушения любого из этих свойств, чтобы эксперимент Майкельсона, проводившего его в подвале фундаментального здания, был бы обречен на неудачу, что и произошло. И только позже, когда часть из этих свойств реального эфира была интуитивно учтена, был получен положительный и весомый результат (Морли и Миллер, 1905; Миллер, 1921-1925; Майкельсон, Пис и Пирсон, 1929). При этом никакого отказа от классической физики не было, просто некоторые обстоятельства постановки эксперимента были изменены в соответствии с уточненными представлениями о свойствах эфира.

Нечто подобное произошло и с проблемой излучения черного тела: при рассмотрении этого сложного явления была первонача-льно использована чрезмерно упрощенная модель излучения.

Как отметил профессор Т.А.Лебедев [5], расчеты английских физиков Рэлея и Джинса, первых исследователей излучения черного тела, исходили из умозрительной схемы и поэтому вообще не имели никакого отношения к классической физике, хотя именно эти работы послужили началом сомнений в ее справедливости. Это видно из следующего:

авторы рассматривали некоторый объем, занятый излучением, фактически искали число собственных колебаний сплошной среды, изолированной от вещества;

авторы выделили электромагнитные колебания из всех взаимодействий, совершаемых в полости твердого тела. Это не могло по своей физической сути привести к правильным результатам. В данном случае рассматривалось всего лишь следствие (излучение), оторванное от своей причины (нагреваемого тела);

для подсчета энергии в сплошной среде Рэлей и Джинс неоправданно использовали «закон» равномерного распре-деления энергии по степеням свободы. Известно, однако, что этот «закон», давая более или менее приемлемые результаты для одноатомных газов, ни в каких других случаях себя не оправдывает. Таким образом, расчеты Рэлея и Джинса основываются на слишком грубой модели, не учитывающей существенных для рассматриваемого случая обстоятельств.

Следует отметить, что ничего необычного и, тем более, катастрофического не произошло: просто несовпадение результатов расчетов с опытными данными надо было трактовать не как кризис в физике, а всего лишь как неполноту принятой модели, как неполноту учета всех существенных факторов.

Более поздние расчеты излучения черного тела, выполненные в 1896 г. немецким физиком Вином, уже основывались на более близких данных, но и он сделал некоторые допущения, оказавшимися слишком грубыми: Вин считал частицы газа идеальными. Если бы им рассматривался реальный газ, то его расчет оказался бы ближе к реальной кривой излучения, поскольку в реальном газе должно возникать больше низкочастотных излучений по сравнению с идеальным газом, поэтому в области длинноволновых излучений кривая Вина стала бы ближе к реальной, чем это следовало из его расчетов.

Как известно, проблему излучения черного тела решил немецкий физик-теоретик М.Планк, который ввел дискретность действия, что, по мнению физиков, означало совершенно новый подход к проблеме. Однако это не совсем точно. И Планк, и Вин в своих расчетах рассматривали излучение осцилляторов, под которыми они понимали возбужденные молекулы. Эти молекулы при колебаниях должны были посылать волны излучения, которые по физической природе являются дискретными. Поэтому Планк сделал не «принципиально новый шаг», а всего лишь учел фактор, которыми предыдущими исследователями упускался из виду, – дискретность излучения возбужденных молекул. Учет этого фактора позволил наиболее близко отразить явление излучения черного тела, и уже в пределах допустимых погрешностей были получены удовлетворительные результаты по совпадению расчетных и опытных данных.

Спрашивается, ну, а теперь, после ввода Планком дискретности излучения, все, наконец учтено? Конечно, нет. Если бы была возможность непрерывно уточнять опытные данные, то неизбежно обнаружилось бы, что и кривая Планка имеет расхождение с полученными экспериментальными результатами. Пришлось бы тогда искать новые неучтенные факторы, например, различия в строении молекул черного тела и заполняющего его полость газа, учитывать факт наличия отверстия в полости тела, влияние окружающей среды, других тел и т. д.

Таким образом, методологическая ошибка физиков-теоретиков в рассмотренных случаях заключалась в том, что они идеализировали свои модели, которые на самом деле, как и всякие модели, являлись приближенными.

Второй существенной ошибкой всех тех, кто полагал, что новые открытия типа рентгеновского излучения или радиоактивности требовали пересмотра основ классической физики, был не учет иерархической организации материи вглубь, отождествление всей материи с конкретными ее формами, освоенными тогдашней наукой.

Открытие существования в природе радиоактивности показало, что, хотя вещества и состоят из молекул, а молекул из атомов, которые считались неделимыми, атомы оказались делимыми, они не являются простейшими, а являются сложными образованиями, и с этим нужно разбираться в первую очередь на физическом, а не на математическом уровне. Собственно, это и произошло, когда Дж.Дж.Томсон выдвинул свою модель атома в виде положительно заряженной сферы с вкрапленными в нее отрицательно заряженными электронами.

Открытие рентгеновского излучения, так же как и открытие до этого электрического и магнитного полей, взаимодействую-щих с веществом, прямо указывало, с одной стороны, на единство физической природы вещества и полей, иначе они не могли бы взаимодействовать, но, с другой стороны, это же говорило и об их качественном различии, поскольку у излучений и у вещества массовые плотности были несоизмеримы. Единственным вариантом, который мог разрешить противоречия, было признание за силовыми полями статуса структуры, основанной на более глубоком иерархическом уровне организации материи, чем организация вещества, и к этому были все предпосылки, поскольку всеми признавалось существование в природе эфира. Это было прямое указание на то, что эфир является строительным материалом и полей, и вещества. Однако вместо этого произошла подмена понятий: силовым полям присвоили статус «особого вида материи», как будто это хоть о чем-то говорит, и были прекращены всякие попытки вскрыть физическую сущность силовых полей взаимодействий, включая и электромагнитные, и гравитационные. А вскоре исчез из поля зрения физиков и сам эфир, и работать стало не над чем.

Таким образом, никаких принципиальных причин для того, чтобы отказываться от представлений классической физики в связи с появлением новых фактов или не совпадений полученных в опытах результатов с ожидавшимися из модельных представлений, не было: нужно было всего лишь уточнять свои представления, а не ломать всю физику.





Дата публикования: 2014-12-10; Прочитано: 878 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...