Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вопрос 12. Емкость катионного обмена



Важнейшей характеристикой почвенного поглощающего комплекса и почвы в целом является емкость катионного обмена (ЕКО). По К.К. Гедройцу, емкость поглощения определяется как сумма всех обменных катионов, которые можно вытеснить из данной почвы. Он считал, что для данной почвы это величина постоянная и может изменяться лишь с изменением природы самой почвы. Позже было установлено, что величина ЕКО существенно зависит от рН взаимодействующего с почвой раствора и несколько варьирует при замене одного вида насыщающего катиона на другой.

Под емкостью катионного обмена будем понимать общее количество катионов одного рода, удерживаемых почвой в обменном состоянии при стандартных условиях и способных к обмену на катионы взаимодействующего с почвой раствора. Величину емкости катионного обмена выражают в миллиграмм-эквивалентах на 100 г почвы или ее фракции. Согласно правилам Международной системы единиц (СИ), величина ЕКО, выраженная в сМ(р+) • кг-1 (сантимоли положительных зарядов в 1 кг почвы), численно совпадав с числом миллиграмм-эквивалентов на 100 г почвы.

Емкость обмена не следует отождествлять с суммой обменных катионов. Последняя определяется как общее количество катионов, вытесняемых из незасоленной и бескарбонатной почвы нейтральным раствором соли. Сумма обменных катионов характеризует природное состояние почвы, она может совпадать количественно с ЕКО, но может и существенно от нее отличаться. Поскольку ЕКО зависит от рН, для одной и той же почвы сумма обменных катионов может быть ниже, если почва имеет кислую реакцию, ЕКО — выше, если ее определяют с помощью буферного раствор при рН 8,2. Возможны и обратные зависимости.

Учитывая зависимость емкости обмена от рН и необходимость характеристики почвы не только в условно выбранном стандартном состоянии, но и в природной обстановке, следует различат три вида ЕКО:

• емкость катионного обмена стандартную определяют с помощью буферных растворов при постоянном значении рН. С этой целью почву насыщают ионами Ва2+ из буферного раствора с рН 6,5 После насыщения емкость определяют по количеству поглощенного почвой Ва2+;

• емкость катионного обмена реальную (или эффективную) определяют путем обработки почвы небуферными растворами солей о реальной емкости катионного обмена можно судить с достаточной точностью по сумме обменных катионов;

• дифференциальная (или рН-зависимая) емкость катионного обмена характеризует приращение емкости катионного обмена с увеличением рН равновесного раствора: ∆ЕКО/DрН. Чтобы найти дифференциальную ЕКО, почву насыщают катионами одного рода из буферных растворов с различными значениями рН (например 6,5 и 8,2), а затем рассчитывают общее приращение ЕКО или её приращение на единицу рН.

Емкость катионного обмена зависит от гранулометрического состава почвы и строения веществ, входящих в состав почвенного поглощающего комплекса. Увеличение ЕКО в тяжелых по механическоскому составу почвах обусловлено не только нарастанием удельной поверхности, но и изменением природы слагающих различные фракции веществ

Величина ЕКО зависит от числа отрицательных зарядов, приходящихся на единицу массы или поверхности ППК. Обменные катионы компенсируют отрицательный заряд, и в отсутствие внешнего электрического поля каждая частица ППК электронейтральна.

Наибольшей емкостью обладают гумусовые вещества, для которых особенно сильно выражена зависимость ЕКО от рН. В нейтральной и кислой средах в реакциях обмена участвует водород только карбоксильных групп. В щелочной среде диссоциируют также фенольные группы и некоторые другие гидроксилы, что резко увеличивает ЕКО. Надо иметь в виду, что карбоксильные группы гумусовых кислот неодинаковы. Константы диссоциации групп СООН зависят от их положения в молекуле и ближайшего окружения.

В обогащенных гумусом горизонтах почв величина ЕКО обусловлена в значительной мере органическими веществами. По данным М.А. Винокурова, емкость органической части почвы в 10—30 раз превышает ЕКО минеральной части, и при содержании гумуса около 5—6 % на его долю приходится 30—60 % ЕКО

При количественном описании явлений катионного обмена редко используют уравнения изотерм адсорбции, например уравнения Фрейндлиха, Ленгмюра и др. Иногда и само явление обмена рассматривают как один из видов адсорбции. Однако различия между адсорбционными явлениями и ионным обменом настолько велики, что на этом следует остановиться подробнее.

Вопрос 13. Адсорбцией называют концентрированно вещества адсорбата объема газа или жидкости на поверхности твердого тела (адсорбета) или жидкости. Если молекулы адсорбата образуют поверхностное химическое соединение с адсорбентом, то говорят о хемосорбции. Адсорбция увеличивается с ростом давления газа или концентрации раствора. При снижении парциального давления адсорбируемого компонента газовой смеси или при бесконечном разбавлении раствора адсорбция уменьшается вплоть до полного освобождения поверхности адсорбента от молекул адсорбата.

Сухие почвы обладают способностью адсорбировать различные газы и пары. Наиболее интенсивно происходит адсорбция молекул воды, которая описывается уравнением Брунауера — Эммета — Теллера В меньшей степени адсорбируются СО2, O2, N2. Адсорбция воды, диоксида углерода и кислорода может сопровождаться химическим взаимодействием с компонентами твердых фаз почв (хемосорбция). Из растворов почвы адсорбируют нейтральные молекулы органических соединений, гумусовые вещества.

Адсорбцию вызывают молекулярные силы поверхности адсорбента Неполярные молекулы удерживаются за счет дисперсионных сил. Полярные молекулы (диполи, мультиполи) взаимодействуют с электро-статическим полем поверхности адсорбента, что усиливает адсорбцию. Одно из главных различий между адсорбцией и ионным обменом заключается в том, что обменные катионы являются обязательным компонентом ППК и могут быть только заменены на катионы другого рода, но не удалены вовсе. Попытка пространственного расчленения ППК на анионную часть и катионы привела бы к нарушению принципа электронейтральности. В противоположность этому поверхность адсорбента может быть полностью лишена молекул адсорбата. Общее содержание обменных катионов остается сравнительно постоянным (в пределах постоянства величины ЕКО), тогда как количество адсорбированного вещества является функцией активности адсорбата в объеме фазы. Иными словами адсорбент и адсорбат могут существовать раздельно, тогда как ППК составляет единое целое.

В то же время количественные закономерности адсорбции и ионного обмена могут быть описаны сходными по форме уравнениями. Для описания изотерм адсорбции пользуются уравнением Фрейндлиха или уравнением Ленгмюра.

Эмпирическое уравнение Фрейндлиха имеет вид

где Q — количество адсорбированного вещества; с — его равновесная концентрация (или равновесное парциальное давление); m и n -эмпирические константы. Это уравнение впервые было сформулировано Беммеленом в 1888 г., но в литературе закрепилось как уравнение Фрейндлиха. Оно хорошо описывает многие сорбционные процессы, хотя и не позволяет найти предельную величину максимальной адсорбции.

Уравнение Ленгмюра для мономолекулярной адсорбции записывают в следующем виде:

где Q— количество адсорбированного вещества на 1 г адсорбента; С - равновесная концентрация; C—константа равновесия; Qmax — максимальное количество вещества, адсорбируемое адсорбентом, его сорбционная емкость.

При изучении процессов поглощения почвами катионов, анионов, неполярных молекул широко используют представление о специфической и неспецифической адсорбции. Различие между ними определяется характером связи поглощенных почвой веществ с активными адсорбционными центрами на поверхностях твердых фаз.

Вопрос 14. Неспецифическая адсобция. Неспецифическая адсорбция обусловлена слабыми молекулярными (вандерваальсовыми и кулоновскими электростатическими, силами). Электрическое взаимодействие характерно для классического варианта ионного обмена, когда удерживаемые за счет электростатического взаимодействия катионы и анионы легко обмениваются на катионы и анионы равновесного почвенного раствора.

Такое взаимодействие характерно в чистом виде для катионов Nа+, Сs+, частично для К+, Са2+, Мg2+, Ва2+, а также для таких анионов, как Сl- и NO.Большинство важнейших анионов (Н2РО, НРО, SО, SеO, F-), катионы щелочно-земельных металлов, катионы и гидроксиды практически всех тяжелых металлов в значительной мере или полностью поглощаются по механизму специфической адсорбции. Это означает, что при таком взаимодействии образуются значительно более прочные координационные и ковалентные связи с поверхностными соединениями или группами. Иногда отмечают, что хемосорбция отличается образованием еще более прочных связей. Связанные по механизму специфической адсорбции ионы не удается вытеснить катионами и анионами нейтральных солей по типу обычных реакций ионного обмена. При специфической адсорбции может поглощаться значительно большее количество ионов, чем это вытекает из ЕКО и уравнений обмена, причем уровень поглощения сильно зависит от рН.

Специфически могут связываться также ионы К+ и NН, в том числе в межпакетных пространствах минералов с расширяющейся решеткой, а также гидроксокомплексы катионов многих металлов. Все это осложняет анализ количественных закономерностей реакций ионного обмена





Дата публикования: 2014-12-11; Прочитано: 4627 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...