Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Применение АЦП



Микросхемы АЦП выполняют функцию, прямо противоположную функции ЦАП, — преобразуют входной аналоговый сигнал в последовательность цифровых кодов. В общем случае микросхему АЦП можно представить в виде блока, имеющего один аналоговый вход, один или два входа для подачи опорного (образцового) напряжения, а также цифровые выходы для выдачи кода, соответствующего текущему значению аналогового сигнала (рис. 13.13).

Часто микросхема АЦП имеет также вход для подачи тактового сигнала CLK, сигнал разрешения работы CS и сигнал, говорящий о готовности выходного цифрового кода RDY. На микросхему подается одно или два питающих напряжения и общий провод. В целом микросхемы АЦП сложнее, чем микросхемы ЦАП, их разнообразие заметно больше, и поэтому сформулировать для них общие принципы применения сложнее.


Рис. 13.13. Микросхема АЦП

Опорное напряжение АЦП задает диапазон входного напряжения, в котором производится преобразование. Оно может быть постоянным или же допускать изменение в некоторых пределах. Иногда предусматривается подача на АЦП двух опорных напряжений с разными знаками, тогда АЦП способен работать как с положительными, так и с отрицательными входными напряжениями.

Выходной цифровой код N (n-разрядный) однозначно соответствует уровню входного напряжения. Код может принимать 2n значений, то есть АЦП может различать 2n уровней входного напряжения. Количество разрядов выходного кода n представляет собой важнейшую характеристику АЦП. В момент готовности выходного кода выдается сигнал окончания преобразования RDY, по которому внешнее устройство может читать код N.

Управляется работа АЦП тактовым сигналом CLK, который задает частоту преобразования, то есть частоту выдачи выходных кодов. Предельная тактовая частота — второй важнейший параметр АЦП. В некоторых микросхемах имеется встроенный генератор тактовых сигналов, поэтому к их выводам подключается кварцевый генератор или конденсатор, задающий частоту преобразования. Сигнал CS разрешает работу микросхемы.

Выпускается множество самых разнообразных микросхем АЦП, различающихся скоростью работы (частота преобразования от сотен килогерц до сотен мегагерц), разрядностью (от 6 до 24), допустимыми диапазонами входного сигнала, величинами погрешностей, уровнями питающих напряжений, методами выдачи выходного кода (параллельный или последовательный), другими параметрами. Обычно микросхемы с большим количеством разрядов имеют невысокое быстродействие, а наиболее быстродействующие микросхемы имеют небольшое число разрядов. Область применения любой микросхемы АЦП во многом определяется использованным в ней принципом преобразования, поэтому необходимо знать особенности этих принципов. Для выбора и использования АЦП необходимо пользоваться подробными справочными данными от фирмы-производителя.


Рис. 13.14. Компаратор напряжения

В качестве базового элемента любого АЦП используется компаратор напряжения (рис. 13.14), который сравнивает два входных аналоговых напряжения и, в зависимости от результата сравнения, выдает выходной цифровой сигнал — нуль или единицу. Компаратор работает с большим диапазоном входных напряжений и имеет высокое быстродействие (задержка порядка единиц наносекунд).


Рис. 13.15. АЦП последовательного типа

Существует два основных принципа построения АЦП: последовательный и параллельный.

В последовательном АЦП входное напряжение последовательно сравнивается одним единственным компаратором с несколькими эталонными уровнями напряжения, и в зависимости от результатов этого сравнения формируется выходной код. Наибольшее распространение получили АЦП на основе так называемого регистра последовательных приближений (рис. 13.15).

Входное напряжение подается на вход компаратора, на другой вход которого подается эталонное напряжение, ступенчато изменяющееся во времени. Выходной сигнал компаратора подается на вход регистра последовательных приближений, тактируемого внешним тактовым сигналом. Выходной код регистра последовательных приближений поступает на ЦАП, которое из опорного напряжения формирует меняющееся эталонное напряжение.

Регистр последовательных приближений работает так, что в зависимости от результата предыдущего сравнения выбирается следующий уровень эталонного напряжения по следующему алгоритму:

Понятно, что процесс этот довольно медленный, требует нескольких тактов, причем в течение каждого такта должны успеть сработать компаратор, регистр последовательных приближений и ЦАП с выходом по напряжению. Поэтому последовательные АЦП довольно медленные, имеют сравнительно большое время преобразования и малую частоту преобразования.

Второй тип АЦП — АЦП параллельного типа — работает по более простому принципу. Все разряды выходного кода вычисляются в них одновременно (параллельно), поэтому они гораздо быстрее, чем последовательные АЦП. Правда, они требуют применения большого количества компараторов (2n–1), что вызывает чисто технологические трудности при большом количестве разрядов (например, при 12-разрядном АЦП требуется 4095 компараторов).

Схема такого АЦП (рис. 13.16) включает в себя резистивный делитель из 2n одинаковых резисторов, который делит опорное напряжение на (2n–1) уровней.


Рис. 13.16. 3-разрядный АЦП параллельного типа

Входное напряжение сравнивается с помощью компараторов с уровнями, формируемыми делителем напряжения. Выходные сигналы компараторов с помощью шифратора преобразуются в n-разрядный двоичный код. Шифратор выдает на выход номер последнего из сработавших (то есть выдавших сигнал логической единицы) компараторов. Например, в случае 3-разрядного АЦП (на рисунке) при величине входного напряжения от 0 до 1/8 опорного напряжения выходной код будет 000, при входном напряжении от 1/8 до 2/8 опорного напряжения сработает первый компаратор, что даст выходной код 001, при входном напряжении от 2/8 до 3/8 опорного напряжения сработают компараторы 1 и 2, что даст выходной код 010, и т.д. Процесс преобразования происходит в параллельном АЦП очень быстро, поэтому частота преобразования может достигать сотен мегагерц.

Для повышения быстродействия в параллельном АЦП иногда применяется конвейерный принцип: выходной код компараторов записывается в (2n–1)-разрядный параллельный регистр, показанный на рис. 13.16. Выходной код шифратора также записывается в n-разрядный параллельный регистр. Оба регистра в этом случае тактируются одним и тем же тактовым сигналом. Это снижает требования к быстродействию компараторов и шифратора. Правда, выходной код АЦП задерживается из-за таких регистров на два периода таковой частоты.

Громоздкость структуры параллельного АЦП приводит к тому, что в некоторых АЦП применяется смешанный параллельно-последовательный принцип. Это несколько снижает быстродействие подобного АЦП по сравнению с обычным параллельным АЦП, но зато позволяет получить большое число разрядов, не увеличивая количество компараторов до (2n–1).

Для того чтобы АЦП любого типа работал с использованием всех своих возможностей, необходимо обеспечить согласование диапазона изменения входного аналогового сигнала с допустимым диапазоном (динамическим диапазоном) входного напряжения АЦП.

На рис. 13.17 показано четыре возможных случая соотношения динамического диапазона АЦП (от 0 до UREF или от UREF1 до UREF2) и входного сигнала. В случаях а и б входной сигнал меньше динамического диапазона, поэтому АЦП будет работать правильно, но не будет использовать всех своих возможностей. В случае в входной сигнал слишком большой, поэтому часть его значений не будет преобразована. Только в случае г АЦП действительно будет работать как n-разрядный и будет преобразовывать все значения входного сигнала. Для согласования входного сигнала с динамическим диапазоном АЦП можно применять усилители, аттенюаторы, схемы сдвига. В некоторых случаях согласование может быть достигнуто простым выбором величин опорных напряжений.


Рис. 13.17. Соотношение входного сигнала и динамического диапазона АЦП


Рис. 13.18. Уменьшение количества разрядов выходного кода АЦП

Иногда бывает необходимо уменьшить количество разрядов АЦП. В этом случае нужное количество младших разрядов выходного кода микросхемы просто не используется. На рис. 13.18 показано использование 10-разрядного АЦП в качестве 8-разрядного.

Обратная задача — увеличение разрядности АЦП — встречается чаще. Существует ряд типичных схемотехнических решений по объединению нескольких микросхем АЦП для увеличения количества разрядов выходного кода, но большинство этих решений требует сложных расчетов результирующих погрешностей преобразования и применения аналоговых узлов. Мы не будем их здесь рассматривать. Отметим только, что при возникновении задачи увеличения разрядности надо прежде всего попытаться найти микросхему с нужным количеством разрядов, и только потом рассматривать возможности объединения нескольких микросхем АЦП.

Рассмотрим несколько типичных схем включения АЦП, используемых в аналого-цифровых системах.


Рис. 13.19. Фиксатор превышения входным сигналом установленного порога

Первая схема (рис. 13.19) предназначена для фиксации момента превышения входным аналоговым сигналом заданного порогового напряжения. Схема вырабатывает выходной сигнал (положительный фронт) тогда, когда входной аналоговый сигнал становится больше установленного уровня, причем уровень этот задается цифровым кодом порога. Код порога сравнивается с выходными кодами АЦП с помощью микросхемы компаратора кодов. Выходной сигнал компаратора кодов записывается в триггер по сигналу RDY с АЦП, что позволяет исключить влияние коротких импульсов, возникающих на выходе компаратора в момент изменения входных кодов. Применение этого триггера задерживает выходной сигнал на один такт.

Может показаться, что применение АЦП в данном случае не оправданно, избыточно. Но надо учитывать, что в аналого-цифровых системах АЦП, преобразующий входной сигнал в последовательность кодов, как правило, уже есть, поэтому дополнительного АЦП не требуется, достаточно только включить компаратор кодов и триггер.

АЦП также применяется в схемах вычисления амплитуды входного аналогового сигнала. Для такого вычисления можно использовать уже рассмотренную схему вычислителя экстремального значения входного кода (см. рис. 8.9). В качестве источника последовательности входных кодов в данном случае выступает АЦП (рис. 13.20).


Рис. 13.20. Вычислитель амплитуды аналогового сигнала

В регистр со входом разрешения записи записывается код с выхода АЦП по сигналу RDY в том случае, если текущее значение кода больше значения кода, записанного ранее в регистр. В результате уже после одного периода входного сигнала в регистре будет код амплитуды входного сигнала. За период преобразования АЦП должны успеть сработать компаратор кодов и регистр.

Если такой вычислитель амплитуды входного сигнала используется в составе сложной аналого-цифровой системы, в которой уже присутствует АЦП, непрерывно преобразующий входной сигнал в коды, то дополнительно требуются только цифровые микросхемы: компаратор кодов и регистр.


Рис. 13.21. Включение буферной памяти для запоминания кодов с выходов АЦП

Наиболее часто встречающееся использование АЦП — это преобразование входного сигнала в поток кодов, причем коды эти обычно записываются в буферную память. В данном случае наиболее подходящим является однонаправленный буфер с периодическим режимом работы. То есть сначала в буферную память заносится массив кодов выборок входного сигнала, а затем этот массив читается для дальнейшей обработки. Именно так, например, строится цифровой осциллограф, предназначенный для наблюдения аналоговых сигналов на экране.

Схема включения АЦП в этом случае показана на рис. 13.21. В качестве строба записи в буферную память используется сигнал RDY с АЦП. Подробнее организацию буфера мы уже рассматривали в предыдущей лекции.

Конечно, в реальных аналого-цифровых устройствах все гораздо сложнее, в них требуются схемы синхронизации процесса записи со входным сигналом, схемы предварительной обработки аналогового сигнала, но суть остается той же — буферная память, записывающая последовательность кодов с выхода АЦП. Чем больше объем памяти, тем больший фрагмент входного аналогового сигнала она может запомнить. Например, если память имеет организацию 64Кх8 и работает с 8-разрядным АЦП, то при частоте преобразования АЦП 10 МГц буфер сможет хранить в себе фрагмент аналогового сигнала длительностью 6,5536 мс.

Наконец, последняя схема, которую мы рассмотрим (рис. 13.22), позволяет вдвое повысить быстродействие АЦП, точнее, поднять вдвое частоту записи кодов выборок входного сигнала в буферную память.


Рис. 13.22. Увеличение вдвое частоты преобразования входного сигнала с помощью двух АЦПс буферами

Идея схемы очень проста: используется два АЦП и два буфера, которые работают по очереди, например, четные выборки входного сигнала обрабатывает один АЦП со своим буфером, а нечетные — другой АЦП со своим буфером. В результате запоминание кодов входного сигнала осуществляется с частотой вдвое больше частоты преобразования каждого из АЦП. Например, если каждый АЦП и каждый буфер работают с частотой 10 МГц, то результирующая частота преобразования составит 20 МГц.

Тактовые сигналы АЦП и сигналы RDY на выходах АЦП должны быть сдвинуты один относительно другого на половину периода тактового сигнала. Чтение зарегистрированных кодов из обоих буферов также должно быть организовано по очереди: первый код читается из первого буфера, второй — из второго, третий — опять из первого, четвертый — из второго и т.д. Объем обоих буферов в данном случае складывается. Например, при организации каждого буфера 64Кх8 результирующий буфер будет иметь организацию 128Кх8.

Пользуясь этим же принципом, можно повысить частоту обработки входного сигнала с помощью АЦП не только вдвое, но и втрое, в четыре раза и т.д. Необходимо только согласовать во времени работу соответственно трех, четырех и т.д. АЦП, у каждого из которых должна быть своя буферная память.

Помимо упомянутых здесь АЦП последовательно и параллельного типов существуют еще и АЦП с промежуточным преобразованием. В них входной аналоговый сигнал с помощью аналогового интегратора преобразуется во временной интервал между цифровыми импульсами или в частоту следования цифровых импульсов. Выходной цифровой код, соответствующий входному аналоговому сигналу формируется в результате измерения длительности временного интервала или частоты следования импульсов (рис. 13.23). Если используется выходная частота, то такой АЦП называется "преобразователем напряжение—частота" (ПНЧ).

Такой подход позволяет с помощью сравнительно простых аппаратных средств получить высокую точность преобразования, не зависящую от многих параметров используемых компонентов и от характеристик окружающей среды. Измерение временных интервалов и частоты следования импульсов осуществляется простейшими цифровыми схемами, примеры которых приведены в лекциях 9, 10. Измерения эти могут осуществляться с высокой точностью вследствие того, что существует очень хороший временной эталон — кварцевый генератор. Отметим, что достоинством ПНЧ является также возможность простой передачи его выходного цифрового сигнала на большие расстояния.


Рис. 13.23. АЦП с промежуточным преобразованием

В конце лекции надо еще раз отметить, что приведенные здесь схемы сильно упрощены. Для их практической реализации необходимо знание не только цифровой схемотехники, но и аналоговой и аналого-цифровой схемотехники, а также знание особенностей конкретных микросхем ЦАП и АЦП, что не является предметом данной книги. Однако рассмотренные ключевые принципы использования ЦАП и АЦП и их совместного включения с цифровыми схемами будут полезны любому разработчику.





Дата публикования: 2014-12-11; Прочитано: 1276 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...