Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Тема 1. Численное решение алгебраических и трансцендентных уравнений



Решение уравнений – это одна из древнейших математических задач. Ещё в Древней Греции умели решать линейные и квадратные алгебраические уравнения. В эпоху Возрождения (XV век) Джироламо Кардано и его ученик Луиджи Феррари получили точные решения для алгебраических многочленов 3 и 4 степени. Позднее много усилий было затрачено на получение точного решения многочленов 5 степени и выше. Но только в 20-х годах XIX века было доказано, что решение алгебраического многочлена n-ой степени

an x n + an-1xn-1 +...+ a0 = 0, где an ¹ 0

при n ³ 5 нельзя выразить через коэффициенты с помощью арифметических действий и операций извлечения корня.

Известно, что алгебраический многочлен n-ой степени имеет n корней, причём они могут быть вещественными и комплексными (теорема Гаусса).

Решение трансцендентных уравнений в явном виде также может быть получено в редких, простейших случаях. Трансцендентные уравнения, включающие алгебраические, тригонометрические, экспоненциальные функции от неизвестного x, как правило, имеют неопределённое число корней. Необходимость решения трансцендентных уравнений возникает, например, при расчёте устойчивости систем, расчете парожидкостного равновесия и т.п.

Достаточно распространенной задачей является так же нахождение некоторых или всех решений системы из n нелинейных алгебраических или трансцендентных уравнений с n неизвестными.

Рассмотрим вначале методы решения нелинейных уравнений с одним неизвестным.

Пусть задана непрерывная функция f(x) и требуется найти корни уравнения

f(x)=0 (1.1)

на всей числовой оси или на некотором интервале .

Всякое значение , удовлетворяющее условию , называется корнем уравнения (1.1), а способ нахождения этого значения и есть решение уравнения (1.1).

Методы решения уравнений:

Численное решение уравнения проводится в два этапа:

1 этап. Отделение корней уравнения.

2 этап. Уточнение интересующих корней с заданной точностью ε.

Отделение корней нелинейного уравнения.

Отделение корней – это определение их наличия, количества и нахождение для каждого их них достаточно малого отрезка [a,b], которому он принадлежит.

На первом этапе определяется число корней, их тип. Определяется интервал, в котором находятся эти корни, или определяются приближенные значения корней.

В инженерных расчетах, как правило, необходимо определять только вещественные корни. Задача отделения вещественных корней решается аналитическими и графическими методами.

Аналитические методы основаны на функциональном анализе.

Для алгебраического многочлена n-ой степени (полинома) с действительными коэффициентами вида

Pn(x) = an x n + an-1xn-1 +…+a1x+ a0 = 0, (an >0) (1.2)

верхняя граница положительных действительных корней определяется по формуле Лагранжа (Маклорена):

, (1.3)

где: k ³ 1 – номер первого из отрицательных коэффициентов полинома;

B – максимальный по модулю отрицательный коэффициент.

Нижнюю границу положительных действительных корней можно определить из вспомогательного уравнения

(1.4)

Если для этого уравнения по формуле Лагранжа верхняя граница равна R1, то

= (1.5)

Тогда все положительные корни многочлена лежат в интервале

≤x+.

Интервал отрицательных действительных корней многочлена определяется с использованием следующих вспомогательных функций.

и .

≤x = = .

Рассмотрим пример отделения корней с использованием этого аналитического метода.

Методом Лагранжа определим границы положительных и отрицательных корней многочлена.

3x8 – 5x7 – 6x3 – x – 9 = 0

k = 1 B = |– 9| an = 3

= 4

9x8 + x7 + 6x5 + 5x – 3 = 0

 
 

k = 8 B = 3 an = 9

Отсюда границы положительных корней 0,5 ≤ x+ ≤ 4

3x8 + 5x7 + 6x3 + x – 9 = 0

=

9x8 – x7 – 6x5 – 5x – 3 = 0

k = 1 B = 6 an = 9

 
 

Следовательно, границы отрицательных корней –2 ≤ x≤ –0,6

Формула Лагранжа позволяет оценить интервал, в котором находятся все действительные корни, положительные или отрицательные. Поэтому, для определения расположения каждого корня необходимо проводить дополнительные исследования.

Для трансцендентных уравнений не существует общего метода оценки интервала, в котором находятся корни. Для этих уравнений оцениваются значения функции в особых точках: разрыва, экстремума, перегиба и других.

На практике получил большее распространение графический метод приближённой оценки вещественных корней. Для этих целей строится график функции по вычисленным её значениям.

Графически корни можно отделить 2-мя способами:

  1. Построить график функции y = f(x) и определить координаты пересечений с осью абсцисс− это приближенные значения корней уравнения.

  На графике 3 корня. Первый корень x * Î [a,b]
b x2* x3*
x
x1*
a
y=f(x)
y

Рис. 1.1 Отделение корней на графике f(x).

y=f(x)


  1. Преобразовать f(x)=0 к виду j(x) = y(x), где j(x) и y(x) – элементарные функции, и определить абсциссу пересечений графиков этих функций.

       
   
  На графике 2 корня. Первый корень x 1* Î [a,b]
 
 


Рис. 1.2 Отделение корней по графикам функций j(x) и y(x).

Графический метод решения нелинейных уравнений широко применяется в технических расчётах, где не требуется высокая точность.

Для отделения вещественных корней можно использовать ЭВМ. Алгоритм отделения корней основан на факте изменения знака функции в окрестности корня. Действительно, если корень вещественный, то график функции пересекает ось абсцисс, а знак функции изменяется на противоположный.

Рассмотрим схему алгоритма отделения корней нелинейного уравнения на заданном отрезке в области определения функции.

Алгоритм позволяет определить приближённые значения всех действительных корней на отрезке [a, b]. Введя незначительные изменения в алгоритм, его можно использовать для определения приближённого значения максимального или минимального корня.

Приращение неизвестного Δx не следует выбирать слишком большим, чтобы не «проскочить» два корня.

Недостаток метода – использование большого количества машинного времени.


 
1.2. Алгоритмы уточнения корней уравнения.

Уточнение корня – это вычисление интересующего корня с заданной точностью e.

Приближённые значения корней уравнения, полученные на предыдущем этапе, уточняются различными итерационными методами.

Рассмотрим некоторые из них.

1.2.1. Метод дихотомии (половинного деления, бисекций).

Постановка задачи:

Дано нелинейное уравнение ¦(x) = 0.

Корень отделен, т.е. известно, что x* Î [a,b].

Требуется вычислить корень с заданной точностью ε.

Метод реализует стратегию постепенного уменьшения отрезка существования корня, используя факт изменения знака функции в окрестности корня.

Алгоритм метода.

  1. Вычислить координату середины отрезка [a,b] x = (a+b)/2 и значение ¦(x) в этой точке.
  2. Уменьшить отрезок, отбросив ту его половину, на которой корня нет.

Если знак функции в начале отрезка и в его середине одинаков, то корень находится на второй половине, первую половину можно отбросить, переместив начало отрезка в его середину:

если ¦(a) ·¦(x)>0 => x*Î [x,b] => a=x, иначе x*Î [a, x] => b=x

  1. Проверить условие завершения вычислений: длина отрезка не превышает заданную точность и значение функции близко к 0 с заданной точностью:

b-a ≤ ε ∩ |¦(x)| ≤ ε.

Если условие достигнуто, расчет завершен, иначе повторить алгоритм сначала.

 
 


x

/
/
a

/
/


Рис. 1.4 Геометрическая иллюстрация метода бисекций.

Количество итераций n, требуемых для достижения требуемой точности ε можно оценить заранее из соотношения

(1.6)

Метод дитохомии − простой и надежный метод поиска простого корня любой функции, устойчивый к погрешности округления. Даже если на отрезке есть несколько корней (нечетное количество),то будет найден один из них.

Недостатки метода: скорость сходимости низкая, не обобщается на систему уравнений.

Метод дихотомии нельзя использовать для уточнения не простого корня − корень совпадает с точкой экстремума функции, т.к. в этом случае функция не изменяет свой знак в окрестности корня.

Рис. 1.6. Непростой корень уравнения.

Пример 1.1. Требуется решить уравнение x3+2x=1

Сначала нужно отделить решения.

Удобно записать уравнение в виде x3=1-2x и построить графики двух элементарных функций ¦1(x)= x3 и ¦2(x)=1-2x

Рис. 1.7 Отделение корней уравнения x3 = 1 – 2 x.

Из графика следует, что корень один: x* Î [0;1].

Проверим наличие корня на отрезке

¦(a) = ¦(0) = 03+2·0 = -1, ¦(b) = ¦(1) = 13+2·1 = 2

Знаки на концах отрезка разные, следовательно, корень отделен верно.

Выполним несколько итераций уточнения корня.

1 итерация. Середина отрезка x = (0 + 1) / 2 = 0,5

Значение функции в середине ¦(x)=¦(0,5)= 0,53+2·0,5-1=0,125>0

Функция меняет свой знак на первой половине отрезка, следовательно, корень на первой половине, поэтому отбросим вторую половину, переместив конец отрезка в середину: x* Î [0;0,5]

2 итерация. Середина отрезка x = (0 + 0,5) / 2 = 0,25

Значение функции в середине

¦(x)=¦(0,25)= 0,253+2·0,25-1=0,0115625-0,5=-0,484375

Функция не меняет свой знак на первой половине отрезка, поэтому отбросим ее: x* Î [0,25;0,5]

Вычисления следует продолжить до достижения требуемой точности. Например, если ε=0,001 то потребуется не менее 10 итераций:

1.2.2. Метод простых итераций (метод последовательных приближений).

Метод реализует стратегию постепенного уточнения значения корня.

Постановка задачи. Дано нелинейное уравнение (1.1). Корень отделен x* Î [a;b]. Требуется уточнить корень с точностью ε.

Уравнение (1.1) преобразуем к эквивалентному виду x=φ(x), (1.7)

что можно сделать всегда и притом множеством способов.

Выберем начальное приближение x0Î [a;b].

Вычислим новые приближения:

x1=φ(x0)

x2=φ(x1)

………..

xi=φ(xi-1), i=1,2,… где i − номер итерации. (1.8)

Последовательное вычисление значений xi по формуле (1.8) называется итерационным процессом метода простых итераций, а сама формула - формулой итерационного процесса метода.

Если , то итерационный процесс сходящийся.

Условие сходимости (1.9)

Точное решение x* получить невозможно, так как требуется бесконечный итерационный процесс.

Можно получить приближенное решение, прервав итерационный (1.8) при достижении условия

, (1.10)

где ε - заданная точность; i - номер последней итерации.

В большинстве случаев условие завершения итерационного процесса (1.10) обеспечивает близость значения xi к точному решению:

Рассмотрим геометрическую иллюстрацию метода простых итераций.

Уравнение (1.7) представим на графике в виде двух функций: y1 = x и y2= φ(x).

Возможные случаи взаимного расположения графиков функций, и соответственно, видов итерационного процесса показаны на рис. 1.7 – 1.10.

Рис. 1.7 Итерационный процесс для случая 0< <1 xÎ[a,b].

 
 


Рис. 1.8 Итерационный процесс для случая -1< <1 xÎ[a,b].

 
 


Рис. 1.9 Итерационный процесс для случая >1 xÎ[a,b].

 
 


Рис. 1.10 Итерационный процесс для случая £ - 1 xÎ[a,b].

Из анализа графиков следует, что скорость сходимости растет при уменьшении значения

Метод достаточно прост, обобщается на системы уравнений, устойчив к погрешности округления (она не накапливается).

При разработке алгоритма решения нелинейного уравнения методом простых итераций следует предусмотреть защиту итерационного процесса от зацикливания: использовать в качестве дополнительного условия завершения итерационного процесса превышение заданного максимального числа итераций.

Основной проблемой применения метода является обеспечение сходимости итерационного процесса: нужно найти такое эквивалентное преобразование (1.1) в (1.7), чтобы обеспечивалось условие сходимости (1.9).

Простейшие эквивалентные преобразования, например:

f(x) = 0 => x+f(x) = x, т.е. φ(x) = x + f(x)

или выразить явно x из (1.1)

f(x) = 0 => x - φ(x) = 0 => x = φ(x)

не гарантируют сходимость.

Рекомендуется следующий способ получения формулы сходящегося итерационного процесса.

Пусть .

Если это не так, переписать уравнение (1.1) в виде

Умножить обе части уравнения на и к обеим частям прибавить x:

Константу l вычислить по формуле:

(1.11)

Такое значение λ гарантирует сходящийся итерационный процесс по формуле

xi = xi+1− λ f(x) (1.12)

где i=1,2,… - номер итерации, x0Î[a,b] – начальное приближение.

Пример 1.2.

Методом простых итераций уточнить корень уравнения x3=1-2 x с точностью ε=0,001. Корень отделен ранее (см. пример 1.1), x* Î [0;1].

Сначала нужно получить формулу сходящегося итерационного процесса.

Из уравнения выразим явно x:

Проверим условия сходимости для полученной формулы:

, ,

для x Î (0;1].

Условие сходимости не соблюдается, полученная формула не позволит уточнить корень.

Воспользуемся описанным выше способом получения формулы итерационного процесса (формулы 1.11, 1.12).

, , для всех x Î [0;1].

Наибольшее значение принимает при x = 1, т.е.

Следовательно .

Формула сходящегося итерационного процесса

Уточним корень с помощью данной формулы.

Выберем начальное приближение на [0;1], например x0=0,5 (середина отрезка).

Вычислим первое приближение

Проверим условие завершения итерационного процесса

Расчет следует продолжить.

x3 = 0,458216

x4 = 0,455688

x5 = 0,454488

x6 = 0,453917 − ответ, т.к.

Проверим полученное значение, подставив в исходное уравнение:

Значение f(x) близко к 0 с точностью, близкой к ε, следовательно, корень уточнен правильно.

1.2.3 Метод Ньютона (касательных).

Постановка задачи.

Дано нелинейное уравнение (1.1) f(x)=0. Корень отделен x* Î [a;b]. Требуется уточнить корень с точностью ε.

Метод основан на стратегии постепенного уточнения корня. Формулу уточнения можно получить из геометрической иллюстрации идеи метода.

 
 


Рис. 1.12. Геометрическая иллюстрация метода Ньютона.

На отрезке существования корня выбирается начальное приближение x0. К кривой f(x) в точке А с координатами (x0, f(x0)) проводится касательная. Абсцисса x1 точки пересечения этой касательной с осью ОХ является новым приближением корня.

Из рисунка следует, что x1 = x0 − CB

Из ∆ABC: CD= . Но .

Следовательно,

Аналогично, для i-го приближения можно записать формулу итерационного процесса метода Ньютона:

, где x0 Î [a;b]. (1.13)

Условие окончания расчета: , (1.14)

где −корректирующее приращение или поправка.

Условие сходимости итерационного процесса:

(1.15)

Если на отрезке существования корня знаки и не изменяются, то начальное приближение, обеспечивающее сходимость, нужно выбрать из условия

, x0Î[a;b]. (1.16)

т.е. в точке начального приближения знаки функций и ее второй производной должны совпадать.

Рис. 1.13. Геометрическая иллюстрация выбора начального приближения: график f(x) вогнутый, , тогда x0=b, т.к. f(b)>0.

Если же выбрать x0=a, то итерационный процесс будет сходиться медленнее или даже расходиться (см. касательную для x0=a).


Рис. 1.14. Геометрическая иллюстрация выбора начального приближения: график f(x) выпуклый, f ’’(x)<0, тогда x0 =a, т.к. f(a)<0.

Метод Ньютона в отличие от ранее рассмотренных методов используют свойства функции в виде значения производной, что значительно ускоряет итерационный процесс. При этом, чем больше значение модуля производной в окрестности корня (чем круче график функции), тем быстрее сходимость.

Достоинства метода: высокая скорость сходимости; обобщается на системы уравнений.

Недостатки: сложный, т.к. требуется вычисление производных; сильная зависимость сходимости от вида функции и выбора начального приближения.

Пример 1.3.

Методом Ньютона уточнить корни уравнения x3 = 1− 2x с точностью ε=0,001. Корень отделён ранее (пример 1.1), x* Î [0,1].

Сначала нужно выбрать начальное приближение.

f(x) = x3+ 2 x−1

f ’(x) = 3 x2 +2

f ’’(x) = 6 x

Производные имеют постоянный знак на отрезке (0,1], поэтому для выбора начального приближения достаточно использовать условие (1.16).

Знак второй производной на отрезке положительный, следовательно

x0 = b = 1, т.к. f(b) = f(1) = 13+2·1−1 = 2 > 0

Вычислим несколько приближений:

x1 =

x2 =

x3 =0,464935−0,011468=0,453467

x3 =0,453463−0,0000695=0,453398

Решение получено за 4 итерации, так как поправка стала меньше заданной точности: 0,0000695 < ε.





Дата публикования: 2014-12-11; Прочитано: 1864 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.038 с)...