Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Роль космологии в естественнонаучных революциях



Особую роль среди естественных наук играет космология. Она связана практически со всеми естественными науками и, в какой-то степени, придает им романтический ореол. Космология выросла непосредственно из натурфилософии, а ее древние корни лежат в религиозно-мифологическим миропонимании. На всех этапах своего развития она отражала эволюцию представлений человечества о мире в целом. Так, революция, связанная с трудами Н. Коперника (коперниканская революция) придала космологии огромное значение для осознания человеком своего места в мире. Становление новой космологической картины мира затрагивало всегда как естественнонаучную, так и гуманитарную области. Оно всегда порождало конфликты между людьми разных убеждений. И Галилей, и представитель инквизиции считали, что именно они защищают высшие духовные ценности. И в настоящее время проходят острые дискуссии по методологическим вопросам космологии. Так, теория Большого Взрыва – начала Вселенной – некоторыми учеными и частью общества была воспринята как аргумент в пользу ее «творения» Богом, в то же время другие представители креационизма ((от лат. creatio созидание) - тезис о божественном сотворении мира и человека.), отвергают эту теорию как любую эволюционную теорию, на том основании, что она не совпадает с тем, что говорится в Библии. С космологией тесно связана астрономия – наука о строении Вселенной, природе и развитии космических тел, корни которой также уходят в древний мир. Все это позволяет рассматривать естественнонаучные революции именно как смену космологических и астрономических представлений.

Современная космология основана на идее эволюционизма, общей для всего материального мира, как для живой, так и для неживой материи, а также для мира социального, т.е. для общества, цивилизации. Поэтому они называются идеей глобального эволюционизма. До середины XX века считалось, что способностью к развитию, усложнению, самоорганизации обладает только мир живой природы. В целом же, в мире все самопроизвольные процессы идут лишь в сторону возрастания беспорядка, хаоса. Принцип возрастания хаоса долго не могли свести воедино с теорией Дарвина – теорией эволюции, самопроизвольного усложнения живой материи. Лишь в последней четверти ХХ века были исследованы переходы от хаоса к порядку и обратно, возникла новая наука - синергетика. Глобальный эволюционизм рассматривается в настоящее время как некий каркас, на котором выстраиваются концепции естествознания.

Итак, каждая глобальная естественнонаучная революция начинается, как правило, именно в астрономии – с решения чисто астрономических проблем. Эти проблемы связаны с недостаточной удовлетворенностью принятой системой отсчета наблюдаемых движений в изучаемом человеком мире. Далее она сопровождается радикальным пересмотром имевшихся космологических представлений о самом этом мире и о Вселенной в целом. Завершается революция подведением или возведением необходимого нового фундамента (физического обоснования) под радикально пересмотренные космологические представления.

Первой глобальной естественнонаучной революцией, преобразовавшей астрономию, космологию и физику, было создание последовательного учения о геоцентрической системе мира. Начало этому учению положил еще древнегреческий ученый Анаксимандр, создавший в 6-м в. до н.э. довольно стройную систему кольцевых мироустроений. Однако последовательная геоцентрическая система была разработана в 4-м в. до н.э. величайшим ученым и философом древности Аристотелем, а затем, в 1-м в. математически обоснована Птолемеем. Геоцентрическую систему мира обычно называют системой Птолемея, а естественнонаучную революцию – аристотелевской.

Переход от исходного эгоцентризма, а затем племенного или этнического топоцентризма к геоцентризму представлял собой первый, очень трудный шаг на пути объективизации естествознания, т.е. формирование его как объективной науки. Мир стал более совершенным – сферическим, правда, ограниченным этой же небесной сферой. Соответственно и сама Земля, занимающая центральное положение в этой сферической Вселенной, стала считаться шарообразной. Пришлось, таким образом, признать не только возможность существования антиподов - обитателей диаметрально противоположных пунктов земного шара, но и принципиальную равноправность всех земных наблюдений мира. Вопрос же о наблюдениях, наблюдателях является весьма важным с точки зрения формирования объективной научной картины мира.

Интересно, что непосредственное подтверждение выводов о шарообразности Земли пришло значительно позже – в эпоху первых кругосветных путешествий и великих географических открытий. То есть это произошло лишь на рубеже XV и XVI веков, когда само геоцентрическое учение Аристотеля - Птолемея с его канонической системой идеальных равномерно вращающихся гомоцентрических (то есть с единым центром) небесных сфер уже доживало свои последние годы.

Вторая глобальная естественнонаучная революция представляла собой переход от геоцентризма к гелиоцентризму, а от него к полицентризму, т.е. учению о множественности звездных миров. Это был переход от частного учения о непосредственно наблюдаемой солнечной планетной системе к общему учению о потенциально бесконечном иерархическом звездном мире, с действующим в нем законом всемирного тяготения Ньютона. Эта революция произошла в эпоху Возрождения, на рубеже XV - XVI веков. Она связывается, прежде всего, с именем Николая Коперника (1473-1543) и его главного труда «Об обращении небесных сфер», в котором он утверждал, что Земля не является центром мироздания, и что «Солнце, как бы восседая на царском престоле, управляет вращающимся около него семейством светил». Еще дальше Коперника пошел знаменитый итальянский мыслитель Дж. Бруно (1548-1600), утверждая, что Вселенная бесконечна, что в ней – множество небесных тел - звезд, подобных Солнцу и окруженных планетами. Тем самым он отстаивал полицентризм, ведущий, в конечном итоге, к отрицанию центра вселенной и признанию ее бесконечности.

Как известно, Дж. Бруно погиб на костре инквизиции, фактически на рубеже двух эпох: эпохи возрождения и эпохи Нового времени, охватывающей три столетия – XVII, XVIII и XIX века. Особую роль в этом периоде сыграл XVII век, ознаменовавшийся рождением современной науки и, в частности, классической механики. У истоков ее стояли такие выдающиеся ученые как Г. Галилей (1564-1642), И. Кеплер (1571-1630) и И. Ньютон (1643-1727).

Третья глобальная естественнонаучная революция означала принципиальный отказ от всякого центризма, отрицание наличия какого-либо центра у Вселенной. Эта революция связана, прежде всего, с появлением теории относительности А. Эйнштейна, т.е. релятивистской (относительной) теорией пространства, времени и гравитации. Метагалактика, то есть вся наша астрономическая наблюдаемая Вселенная как целое, стала описываться однородной и изотропной безграничной релятивистской космологической моделью.

Четвертая глобальная естественнонаучная революция предполагает некий синтез общей относительности с квантовыми (дискретными) представлениями о строении материи в единую физическую теорию наподобие уже создаваемой в наше время единой теории всех фундаментальных физических взаимодействий: гравитационного, электромагнитного, слабого и сильного. Эта революция фактически еще не осуществлена.

Современная, постнеклассическая наука имеет две основные характеристики: 1) распространение идей синергетики на всю сферу научного познания; 2) разработка нового взгляда на эволюцию в рамках теории глобального эволюционизма. Концепция самоорганизации в настоящее время приобретает все больше значения, становясь парадигмой исследования обширного класса систем и процессов, происходящих в них. В 70-х годах XX века возникла новая наука – синергетика, изучающая механизмы самоорганизации и развития. Областью ее исследований является изучение эволюции различных структур, относительная устойчивость которых поддерживается благодаря притоку энергии и вещества извне. В основе синергетики лежит, среди прочих, важное утверждение о том, что материальные системы могут быть открытыми и закрытыми, равновесными и неравновесными, устойчивыми и неустойчивыми, линейными и нелинейными, статическими и динамическими. Принципиальная же возможность процессов самоорганизации обусловлена тем, что в целом все живые и неживые, природные и общественные системы являются открытыми, неравновесными, нелинейными.

Возникновение синергетики связано, в основном, с именами бельгийского физика и химика И. Пригожина (лауреата Нобелевской премии 1977 г.), немецкого физика Г. Хакена и другого немецкого ученого М. Эйгена, а также наших отечественных ученых Б. Белоусова и А. Жаботинского.

И. Пригожин, разрабатывая современную термодинамику необратимых процессов (неравновесную термодинамику) открыл явление образования упорядоченных структур из хаотического, неупорядоченного состояния системы, то есть самоорганизацию, и сформулировал теорему о минимуме производства энтропии в стационарном неравновесном состоянии. К своим идеям он пришел, анализируя специфические химические реакции, которые впервые экспериментально были изучены Б. Белоусовым и А. Жаботинским. И. Пригожин со своими сотрудниками (И. Стенгерс) построили математическую модель таких реакций, а также показали, что в сильно неравновесных условиях может совершаться переход от беспорядка, теплового хаоса к порядку, организованности.

Г. Хакен, изучая процессы самоорганизации, происходящие в лазере, назвал новое направление исследований синергетикой, что в переводе с греческого означает совместное действие, или взаимодействие, и хорошо передает смысл и цель нового подхода к изучению явлений.

М. Эйген доказал, что открытый Ч. Дарвином принцип отбора справедлив и на микроуровне, а генезис (происхождение) жизни есть результат процесса отбора, происходящего на молекулярном уровне. Он показал, что сложные органические структуры с адаптационными характеристиками возникают благодаря эволюционному процессу отбора на основе автокатализа.

Основные понятия и принципы синергетики.

Порядок и хаос. В результате протекания процессов в изолированных системах сами системы переходят в состояние равновесия, которое соответствует максимальному беспорядку системы – равновесный тепловой хаос. Таким образом, самоорганизация, или эволюция в случае замкнутой системы приводит ее в состояние максимального беспорядка. В реальности, тем не менее, часто наблюдаются совершенно противоположные явления.

Уже теория Канта и Лапласа об образовании упорядоченной Солнечной системы из хаотических туманностей противоречила II началу термодинамики. Но особенно ярко проявилось противоречие II начала термодинамики с эволюционной теорией Дарвина. Ведь согласно ей, в мире живого естественно протекающие процессы ведут к усложнению форм и структур, к увеличению порядка, избавлению от хаоса и удалению от равновесия. Другими словами, самоорганизация в живой природе приводит систему к прямо противоположному состоянию, чем самоорганизация в неживых системах.Все это привело к появлению понятия открытой системы, которое и позволило устранить упомянутые противоречия.

Открытость систем. Такие понятия как изолированная (закрытая) система, необратимые процессы являются идеализацией. При изучении обратимых процессов (например, качание маятника в вакууме при отсутствии трения) нет смысла говорить о направлении течения времени, так как прошлое, настоящее и будущее в этом случае не отличаются. Поэтому в уравнениях обратимых процессов время выступает всего лишь как параметр, который можно изменять. Но в реальности в случае с маятником всегда присутствует трение, колебания маятника будут затухающими, и прошлое, настоящее и будущее будут уже отличаться. Ранее уже говорилось о том, что необратимых процессов в живой природе эволюционным принципом стало II начало термодинамики, утверждающее, что энтропия изолированной системы возрастает. Именно рост энтропии устанавливает направление протекания процесса, то есть «стрелу времени».

В своей книге «Что такое жизнь» выдающийся австрийский физик Э. Шредингер указал на то, что средство, при помощи которого организм поддерживает себя на достаточно высоком уровне упорядоченности, то есть на достаточно низком уровне энтропии, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды. Другими словами, организм извлекает из окружающей среды негэнтропию. Открытая система заимствует энергию и вещество из окружающей его среды и одновременно выводит в окружающую среду отработанное вещество и отработанную энергию. Вырабатывая и заимствуя энергию, открытая система производит энтропию, но она не накапливается в ней, а выводится в окружающую среду. С поступлением энергии и вещества в открытую систему ее неравновесность возрастает, разрушаются прежние связи между элементами и возникают новые, которые приводят к новой структуре, новым кооперативным процессам.

Нелинейность. Сложные системы являются нелинейными. Для их описания используются нелинейные математические уравнения, то есть уравнения, которые могут иметь несколько качественно различных решений. Физически это означает возможность различных путей эволюции системы.

При определенных условиях суммарное уменьшение энтропии за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Тогда неупорядоченное однородное состояние системы может потерять устойчивость. В ней возникают и могут возрасти до макроскопического уровня так называемые крупномасштабные флуктуации. При этом из хаоса могут возникнуть структуры, которые последовательно начнут переходить во все более упорядоченные. Образование этих структур происходит не из-за внешнего воздействия, а за счет внутренней перестройки системы, поэтому это явление и получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает.

Бифуркации. Выше было сказано, что нелинейная система уравнений, которой описывается практически любая реальная сложная система, имеет не одно, а подчас целый спектр решений. Ответвления от известного решения появляются при изменении значения параметров системы. Поэтому вводится еще одно понятие - управляющие параметры (параметры порядка). Изменения управляющих параметров способны вызвать катастрофические, то есть большие скачки переменных системы, и эти скачки осуществляются практически мгновенно.

Усложнение структуры и поведения системы тесно связано с появлением новых путей решения в результате бифуркаций. В сильно неравновесных условиях процессы самоорганизации соответствуют «тонкому взаимодействию» между случайностью и необходимостью, флуктуациями и детерминистскими законами. Вблизи бифуркаций, то есть резких, «взрывных» изменений системы, основную роль играют флуктуации или случайные элементы, тогда как в интервалах между бифуркациями преобладает детерминизм. Ситуацию, возникающую после воздействия флуктуации на систему и возникновения новой структуры, И. Пригожин назвал порядком через флуктуацию или «порядком из хаоса». Флуктуации могут усиливаться в процессе эволюции системы или затухать, что зависит от эффективности «канала связи» между системой и внешним миром.





Дата публикования: 2014-11-29; Прочитано: 1204 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...