Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фундаментальные положения теории систем



История формирование системного подхода в исследовании всех объектов реального мира ведет свое начало с древних времен. Древнегреческий философ Демокрит (460-360 до н. э.) положил начало материалистическому атомизму (деление целого на части-атомы), определив фундаментальные категории естествознания – целое, элементы и связь между ними. С этого момента стал формироваться системный взгляд на все предметы, окружающие человека в природе.

С возникновением науки и философии, которые призваны познать и объяснять все явления и процессы в природе и обществе, понятие «система» постоянно изменялось и наполнялось все новым содержанием. Все эволюционные процессы, происходящие в науке, не смогли в корне изменить сущность термина «система».

Формирование теории систем происходило в процессе обобщения знаний предметных отраслей наук и синтеза общих закономерностей образования, функционирования и поведения систем в природе, обществе и технике. Например, М. Месарович, А.И. Уемов, Ю.А. Урманцев сформулировали общие закономерности структурно-функционального анализа и синтеза как ведущих методов системного исследования объекта-системы. В рамках общей теории систем (ОТС) «система» рассматривается как сочетание множества элементов со своими свойствами, множество отношений и множество связей между ними. Средством формального (математического) описания системы стала теория множеств.

А.А. Богданов разработал теорию всеобщей организационной науки – тектологию, в которой обосновал условия организованного и неорганизованного порядка в системе, за счет возможных вариантов реакции самой системы на воздействия факторов внешней среды. Любое воздействие из внешней среды на систему может вызывать три типа «реакции» как в самой системе, так и в ее элементах, связях и отношениях: активную организованность, дезорганизованность, гармонизацию.

Н. Винер, создал теорию кибернетики, в которой обосновал законы информационного взаимодействия элементов в процессе управления системой. Практической реализацией информационных идей управления стало развитие компьютерной техники и современных методов информационного моделирования систем.

Все эти факты позволили обогатить и дополнить теорию систем, рассматривая разные аспекты вопросов организации, существования, поведения, функционирования и упорядоченного соединения элементов в целое.

Теория систем изучает закономерности организации, структурирования, функционирования, поведения и существования любого объекта в качестве системы.

Методологической основой построения теории систем стали следующие универсальные научные принципы.

1. Целостность – это закон устойчиво-динамичного состояния системы при сохранении внешней формы и содержания в условиях взаимодействия с окружающей средой;

2. Дискретность – это закон деления целого образования на элементарные частицы (элементы системы);

3. Гармония – это закон формирования связей при обмене энергией, информацией и веществом между элементами системы и между целой системой и окружающей ее средой;

4. Иерархия – это закон построения отношений между элементами целого образования (структура управления системой);

5. Адекватность – это закон соотношения симметрии и диссиметрии в природе как степень соответствия описания реальной системы формальными методами.

Как следует из содержания приведенных выше принципов, фундаментальной основой построения теории являются законы природных образований, т.е. природных систем. Фундаментальными законами диалектики являются: закон движения, закон развития и закон обмена энергией, информацией и веществом. Главным научным результатом развития теории систем стало формулирование основных законов.

Первый закон теории систем – это закон функционального развития (эволюции) или закон целостности. Он сформулирован на основе принципа целостности и рассматривается, как способность системы претерпевать изменения внутри своей оболочки или окружающей среды, сохраняя самое себя. Первый закон теории систем раскрывает сущность системы как единого, целого образования и может отвечать на вопрос «что» такое система. В рамках этого закона описываются ряд закономерностей структурной организации свойств, связей и отношений между элементами, ограниченных единой формой существования. Жизнедеятельность такой системы обеспечена внутренней организацией системы управления общими ресурсами. Устойчивое или неустойчивое состояние системы зависит от скорости обмена между элементами системы потоками энергии, информации и вещества. В процессе такого обмена часто элемент может потерять свои свойства или приобрести новые, с условием всех изменений в рамках единой формы существования.

С точки зрения линейного мировоззрения, закон целостности объясняет материально-физическую сущность эволюционного развития систем. В данном случае развитие системы обусловлено лишь степенью влияния внешних факторов управления этим развитием (кибернетический принцип). Система рассматривается в качестве «черного ящика», т.е. вход – выход, начальное и конечное состояния. Исследованием внутренних процессов реорганизации элементов в целостной организации пренебрегают, вследствие их достаточной сложности.

Такие процессы, как правило, исследуются в рамках предметных аспектов.

С точки зрения нелинейного мировоззрения, закон целостности раскрывает энергоинформационную сущность внутреннего саморазвития системы, за счет смены состояний хаоса и порядка в самой системе (синергетический принцип). В этом случае исследование системы акцентирует внимание на процессах, происходящих в элементах самой системы, которые зависят от случайного сочетания внутренних и внешних факторов.

По мнению авторов оба принципа являются лишь дополнением один другого и использованные вместе позволяют наиболее полно получить новое качество знаний о внутреннем потенциале ресурсов для развития систем.

Второй закон теории систем – это закон функциональной иерархии систем. Он сформулирован на основе принципа иерархии элементов в системе и объясняет целеобразование (образования цели) функционирования данной системы в окружающей среде, ее функциональной назначение.

Второй закон теории систем отвечает на вопрос «как» нужно управлять этой системой для его полезного использования, не доводя до разрушения. В рамках этого закона объясняется закономерности возникновения внутренней «реакции» со стороны, как самих элементов системы, так и системы в целом на внешние воздействия. Такая реакция может вызывать положительный, отрицательный и нейтрализующий эффекты в структурном образовании.

В рамках кибернетического подхода второй закон теории систем объясняет закономерности построения уровней внешнего управления системой, т.е. с точки зрения окружающей среды. В рамках синергетического подхода – закономерности возникновения саморазвития, самоуправления системой за счет гармонизации обмена различными ресурсами между самой системой и его окружением.

Оба закона теории систем позволяют сформировать наиболее объективные и полные знания об общих закономерностях существования и развития систем разной природы на основе принципа гармонизации взаимодействия, взаимосвязей и взаимоотношений между частью и целым. Теория систем дает абстрактное представление о системах и методах их исследования и создания. Уровень такой абстракции может быть разный. Это и вербальное описание системы, графическое, функциональное, математическое.

Тема 2. Основные понятия, характеризующие строение и функционирование систем

1. Развитие понятия «система».

2. Классификация систем.

3. Понятия, характеризующие строение и функционирование систем.

4. Понятия, характеризующие функционирование и развитие систем.

5. Система и внешняя среда.

1. Развитие понятия «система»

Существует множество направлений исследования системности и теории систем, выработанные такими учеными как Л. фон Берталанфи, Р. Акофф, А. Раппопорт, В. Н. Садовский, А. И. Уемов, Ю. А. Урманцев, Б. С. Флейшман, У. Р. Эшби, Л. Заде, М. Месарович, Дж. Клир и многие другие.

Если рассмотреть историю разработки определений понятия «система», можно увидеть, что каждое из них вскрывает все новую сторону из его богатого содержания. При этом выделяются две основные группы определений. Одна тяготеет к философскому осмыслению понятия система: широко признанным здесь является емкое и глубоко философское определение, которое дал В. Н. Садовский в 1974 г. Другая группа определений основывается на практическом использовании системной методологии и тяготеет к выработке общенаучного понятия системы. Она широко представлена в зарубежном системном движении (У. Р. Эшби, Дж. Клир и другие).

Анализ показывает, что множество рассматриваемых в системном движении вопросов принадлежит не только науке, типа общей теории систем, но охватывают обширную область научного познания как такового. Системное движение затронуло все аспекты научной деятельности. Фактически работы в области теоретических основ системных исследований охватывают три проблемы:

- онтологические основания системных исследований объектов мира, системность как сущность мира;

- гносеологические основания системных исследований, системные принципы и установки теории познания;

- методологические установления системного познания.

В современных условиях понятие «система» используется по отношению к самым различным предметам, явлениям и процессам.

Термин система используют в тех случаях, когда хотят охарактеризовать исследуемый или проектируемый объект как нечто целое (единое), сложное, о котором невозможно сразу дать представление, показав его, изобразив графически или описав математическим выражением (формулой, уравнением и т.п.), и желают подчеркнуть, что это что-то большое, сложное и при этом целое, единое.

Понятие системы подчеркивает упорядоченность, целостность, наличие определенных закономерностей.

Существует несколько десятков определений этого понятия. Их анализ показывает, что определение понятия система изменялось не только по форме, но и по содержанию.

В первых определениях в той или иной форме говорилось о том, что система – это элементы (части, компоненты) и связи (отношения) между ними.

Так, Л. фон Берталанфи определял систему как «комплекс взаимодействующих компонентов» или как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой».

В Большой советской энциклопедии система определяется прямым переводом с греческого «susthma», что означает «состав», т.е. составленное, соединенное из частей.

Для уточнения элементов и связей в определения включают свойства. Так, в определении А. Холла свойства (атрибуты) дополняют понятие элемента (предмета). Затем в определениях системы появляется понятие «цель». Далее, в определение системы начинают включать наряду с элементами, связями и целями еще и наблюдателя N, т.е. лицо, представляющее объект или процесс в виде системы при их исследовании или принятии решения.

На необходимость учета взаимодействия между изучаемой системой и исследователем указывал еще У.Р. Эшби. Но первое определение, в которое в явном виде включен наблюдатель, дал экономист Ю.И. Черняк: «Система есть отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания».

В Большой советской энциклопедии наряду с уже приведенным определением дается следующее: система – «...объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе», т.е. подчеркивается, что понятие элемента (а следовательно, и системы) можно применять как к существующим, материально реализованным предметам, так и к знаниям об этих предметах или о будущих их реализациях.

Таким образом, в понятии система (как и любой другой категории познания) объективное и субъективное составляют диалектическое единство, и следует говорить не о материальности или нематериальности системы, а о подходе к объектам исследования, как к системам, о различном представлении их на разных стадиях познания или создания.

Взгляд на определение системы, как на средство ее исследования, позволил осознать целесообразность определения, в котором объект не расчленяется на элементы, т.е. не разрушается, что делается в уже приведенных определениях, а представляется как совокупность укрупненных компонентов, принципиально необходимых для существования и функционирования исследуемой или создаваемой системы. Это определение соответствует подходу к исследованию систем от целей, а не от элементов и пространства состояний, как другие определения.

Таким образом, система является фундаментальной и универсальной категорией. Все научное знание с момента его зарождения в Древней Греции строило предмет познания в виде системы.

Это делает понятной позицию тех авторов, которые обязательно вводят в определение системы некоторый интегральный признак, и отказываются признавать систему в любой совокупности элементов, просто находящихся в отношениях. Так, В. Н. Садовский в определении системы говорит о «некотором целостном единстве», а в определение уже об «определенной целостности, единстве» А. И. Уемов вводит требование «отношений с заранее фиксированными свойствами», а Ю. А. Урманцев – закон композиции как «условия, ограничивающие отношения единства между элементами». Некоторые авторы используют общий термин «системообразующий фактор», необходимый, чтобы совокупность элементов, находящихся в отношениях, была системой, однако без его конкретизации.

Отсюда следует, что определение системы должно включать не только совокупность, композицию из элементов и отношений, но и целостное свойство самого объекта, относительно которого и строится система.

Обобщенно определение системы дали ученые И. В. Блауберг, В. Н. Садовский, Э. Г. Юдин, считающие, что 1) система представляет собой целостный комплекс взаимосвязанных элементов; 2) она образует особое единство со средой; 3) обычно исследуемая система представляет собой элемент системы более высокого порядка; 4) элементы любой исследуемой системы в свою очередь обычно выступают как системы более низкого порядка.





Дата публикования: 2014-11-28; Прочитано: 789 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...