Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Самоорганизация эволюционных систем



Понятие "самоорганизация" означает упорядоченность существования материальных динамических, т. е. качественно изменяющихся систем. В отличие от понятия "организация" оно отражает особенности существования динамических систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности, или материальной организации.

Существуют два подхода к проблеме самоорганизации предбиологических систем, которые все чаще обсуждаются в естественнонаучной и философской литературе. Это так называемые субстратный и функциональный подходы. К первому из них относят теорию происхождения жизни с вполне определенными особенностями вещественной основы биологических систем, т. е. со строго определенным составом элементов-органогенов и не менее определенной структурой входящих в живой организм химических соединений. Рациональный результат субстратного подхода к проблеме биогенеза - накопленная информация об отборе химических элементов и структур.

В настоящее время известно более ста химических элементов. Большинство из них попадает в те или иные живые организмы и так или иначе участвует в их жизнедеятельности. Однако основу живых систем составляют только шесть элементов, давно получивших наименование органогенов: углерод, водород, кислород, азот, фосфор и сера, общая весовая доля которых в организмах составляет 97,4%. За ними следуют 12 элементов, входящих в состав многих физиологически важных компонентов биосистем. К ним относятся натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их весовая доля в организмах примерно 1,6%. Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере питательной средой). Их доля в организмах составляет около 1%. Участие всех остальных элементов в построении биосистем практически не зафиксировано.

Картина химического мира весьма отчетливо свидетельствует об отборе элементов. К настоящему, времени известно около 8 млн. химических соединений. Из них подавляющее большинство (около 96%) - органические соединения, основной строительный материал которых - все те же б- 18 элементов. И как ни парадоксально, из всех остальных 95- 99 химических элементов природа (по крайней мере на Земле) создала лишь около 300 тыс. неорганических соединений.

Столь резкая диспропорция между едва обозримым множеством органических соединений и каким-то минимумом составляющих их органогенов так же, как и исключительно дифференцированный отбор того же минимума элементов для -построения живых систем, нельзя всецело, объяснить факторами различной распространенности элементов в космосе и на Земле. В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматривать только как дополнение к ним.

На Земле наиболее распространены железо, кислород, кремний, магний, алюминий, кальций, натрий, калий, никель, тогда как углерод занимает лишь 16-е место. В атмосфере Земли углерода не более 0,01 весового процента, в океанах - около 0,002, в литосфере - 0,1. Углерод в литосфере Земли распространен в 276 раз меньше, чем кремний, в 88 раз меньше, чем алюминий, и даже в 6 раз меньше, чем относительно редкий титан. Из органогенов наиболее распространены лишь кислород и водород. Распространенность же углерода; азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и в общем невелика - всего около 0,24 весовых процента.

Следовательно, геохимические условия не играют сколько-нибудь Существенной роли в отборе химических элементов при формировании органических систем, а тем более биосистем. Определяющими факторами здесь выступают требования соответствия между строительным материалом и объектами с высокоорганизованной структурой.

С химической точки зрения такие требования сводятся к отбору элементов, способных к образованию, во-первых, достаточно прочных и, следовательно, энергоемких химических связей и, во-вторых, связей лабильных, т. е. легко подвергающихся гомолизу, гетеролизу или циклическому перераспределению. Вот почему углерод отобран из многих других элементов как органоген № 1. Этот элемент действительно отвечает всем требованиям лабильности. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовать их единство, выступать в качестве носителя внутреннего противоречия.

Атомы углерода в одном и том же соединении способны выполнять роль и акцептора, и донора электронов. Они образуют почти все типы связей, какие знает химия:

• одноэлектронные, например, при хемосорбции углеводородов на графите;

• двухэлектронные (например, в этане);

• трехэлектронные (в бензоле);

• четырехэлектронные;

• шестиэлектронные со всевозможными промежуточными связями.

Среди углерод-углеродных связей можно встретить чисто ковалентные, почти чисто ионные и ионоидные с самыми различными значениями энергии связей.

Следует подчеркнуть, что внутримолекулярное или внутриком-плексное взаимодействие атомов таких элементов, как С, N, S, Р, Н, О, Fe, Mg, Ti, создает исключительное богатство химических связей:

сопряженные связи, обусловливающие высокую электронную проводимость, относительно слабые связи и одновременно очень слабые водородные связи.

О том, как происходил отбор структур, каков его механизм, сказать довольно трудно. Подобно тому как из всех химических элементов только шесть органогенов да 10-15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции шел тщательный отбор и химических соединений.

Из миллионов органических соединений в построении живого организма участвуют лишь несколько сотен; из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклертида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Удивительно, что из такого узкого круга отобранных природой органических веществ составлен трудно обозримый, многообразный мир животных и растений. Полагают, что когда период химической подготовки - период интенсивных и разнообразных превращений -сменился периодом биологической эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств того, что аминокислотный состав гемоглобина самых низших позвоночных и человека практически один и тот же; более или менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т. д.

Каким образом проводилась та химическая подготовка, в результате которой из минимума химических элементов и минимума химических соединений образовался сложнейший высокоорганизованный комплекс - биосистема? Химику важно это понять для того, чтобы научиться у природы так легко и просто приспосабливать для своих нужд “менее организованные материалы”, например: синтезировать сахар, получать стереоспецифические соединения и т. п.

В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Примером может служить система пирольных циклов в гемине, обеспечивающая повышение активности атома железа в окислительно-восстановительных реакциях в миллиарды раз.

Первой и наиболее простой из таких структур можно назвать различные фазовые границы. Они служили основой физической и химической адсорбции, которая: а) вносила элементарное упорядочение во взаимное расположение частиц, б) увеличивала их концентрацию, в) служила фактором проявления каталитического эффекта. Вторым структурным фрагментом называют группировки, обеспечивающие процессы переноса электронов и протонов. К ним относят полупроводниковые цепи и структуры, ответственные за трансгидрирование, или перенос водорода. Третий структурный фрагмент, необходимый для эволюционных систем - это группировки, ответственные за энергетическое обеспечение, - фосфорсодержащие и другие фрагменты.

Следующий фрагмент эволюционных систем - развитая полимерная структура типа РНК и ДНК, выполняющая ряд функций, свойственных перечисленным выше структурам.

Заслуживает внимания ряд выводов, полученных 'самыми различными путями и в самых различных областях науки (геологии, геохимии, космохимии, биохимии, термодинамике, химической кинетике).

• На ранних стадиях химической эволюции мира катализ вообще отсутствовал. Условия высоких температур (выше 5000°К), электрических разрядов и радиации препятствовали образованию конденсированного состояния.

• Первые проявления катализа начинались при смягчении условий (при температуре ниже 5000° К) и образовании первичных твердых тел.

• Роль катализатора возрастала по мере того, как физические условия (главным образом температура) приближались к земным. Но роль катализа вплоть до образования более или менее сложных органических молекул оставалась несущественной.

• Появление таких относительно несложных систем, как СН3ОН, СН2=СН2, Н2СО, НСООН, а тем более аминокислот и первичных Сахаров, было своеобразной некаталитической подготовкой старта для большого катализа.

• Роль катализа в развитии химических систем после достижения стартового состояния, т. е. известного количественного минимума органических и неорганических соединений, начала воз-' растать сравнительно быстро. Отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических способов и обладали широким каталитическим спектром. Отличительная черта второго - функционального - подхода к проблеме предбиологической эволюции состоит в сосредоточении внимания на исследовании процессов самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы. Среди естествоиспытателей такого подхода придерживаются преимущественно физики и математики, рассматривающие эволюционные процессы с позиций кибернетики. Крайняя точка зрения - утверждение о полном безразличии к материалу эволюционных систем: живые системы, вплоть до интеллекта, могут быть смоделированы даже из металлических систем.

Вопросы для самопроверки

Вопрос 1. Как называют науку о химических элементах и их соединениях?

1. биологией

2. физикой

3. химией

4. статистикой

Вопрос 2. Когда был предложен английским ученым Р. Бойлем первый действенный способ определения свойств вещества?

1. в первой половине XVII в.

2. во второй половине XVII в.

3. в начале XVIII в.

4. в середине XVIII в.

Вопрос 3. Результаты исследования какого ученого показали, что качества и свойства тел зависят от того, из каких материальных элементов они состоят?

1. Бойля Р.

2. Менделеева Д.

3. Бутлерова А.

4. Пруста Ж.





Дата публикования: 2014-11-28; Прочитано: 635 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...