Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Элементарные частицы. Общие сведения. Ядерная физика изучает структуру и свойства атомных ядер



Общие сведения. Ядерная физика изучает структуру и свойства атомных ядер. Она исследует также 'взаимопревращения атомных ядер, происходящие в результате как радиоактивных распадов, так и различных ядерных реакций. К ядерной физике тесно примыкают физика элементарных частиц, физика и техника ускорителей заряженных частиц, ядерная энергетика.

Ядерно-физические исследования имеют огромное чисто научное значение, позволяя продвигаться в понимании строения материи, и в то же время чрезвычайно важны в практическом отношении (в энергетике, медицине и т. д.).

Элементарные частицы - первичные, неразложимые частицы, из которых, по предположению, состоит вся материя. В современной физике этот термин обычно употребляется не в своем точном значении, а в менее строгом - для наименования большой группы мельчайших частиц материи, подчиненных условию, что они не являются атомами или атомными ядрами, за исключением протона. К элементарным частицам относятся протоны, нейтроны, электроны, фотоны, пи-мезоны, мюоны, тяжелые лептоны, нейтрино трех типов, странные частицы (К-мезоны, гипероны), разнообразные резонансы, мезоны со скрытым очарованием, "очарованные" частицы, промежуточные векторные бозоны и т.п. - всего более 350 частиц, в основном нестабильных. Их число продолжает расти по мере расширения наших знаний. Большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку являются составными системами. Общее свойство всех этих частиц заключается в том, что они представляют собой специфические формы существования материи, не ассоциированной в ядра и атомы.

Массы большинства элементарных частиц имеют порядок величины массы протона, равной 1,7 • 10-24 г. Размеры протона, нейтрона, пи-мезона и других адронов - порядка 10'"см, а электрона и мюона не определены, но меньше 10-16см. Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения. Наиболее важное квантовое свойство всех элементарных частиц - способность испускаться и поглощаться при взаимодействии с другими частицами.

Характеристики элементарных частиц. В зависимости от времени жизни частицы делятся на стабильные (электрон, протон, фотон и нейтрино), квазистабильные (распадающиеся при электромагнитном и слабом взаимодействиях, время их жизни больше 10-20 с) и резонансы (частицы, распадающиеся за счет сильного взаимодействия, типичное время жизни 10-22-10-24 с).

Общими для всех элементарных частиц характеристиками являются масса, время жизни, электрический заряд, спин и др.

Элементарные частицы - характеризуются моментом импульса. Согласно квантовой механике, момент импульса системы может принимать не любые, а дискретные значения, его скачки равняются постоянной Планка, поэтому его измеряют в единицах этой постоянной (дискретность возможных значений момента совершенно незаметна в обычной жизни, поскольку постоянная Планка очень мала). Момент, измеренный в таких единицах, называется спином. Спин может принимать целые или полуцелые значения. В соответствии опять же с квантовой механикой проекция момента на какую-либо ось тоже имеет дискретные значения. Разумеется, такая дискретность находится далеко за пределами измерительных возможностей обычной механики. Иное дело - объекты микромира, для них дискретность значений вектора момента и его проекций играет существенную роль.

Характеристики элементарных частиц, принимающие, дискретные значения, принято называть квантовыми числами. Различают спиновое, орбитальное, магнитное и другие квантовые числа.

Помимо указанных величин, элементарные частицы дополнительно характеризуются еще рядом квантовых чисел, которые называются внутренними. Это барионный и лептонный заряды, чётность, а также кварковые ароматы - характеристики, определяющие тип кварка, такие, как изоспин, странность, "очарование", "красота", цвет. Внутренние квантовые числа вводятся для того, чтобы формализовать закономерности, экспериментально наблюдаемые в процессах, происходящих в микромире.

Истинно элементарные частицы. На сегодняшний день с теоретической точки зрения известны следующие истинно элементарные (на данном этапе развития науки считающиеся неразложимыми) частицы: кварки и лептоны (эти разновидности относятся к частицам вещества), кванты полей (фотоны, векторные бозоны, глюоны), а также частицы Хиггса.

Каждая из пар лептонов объединяется с соответствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, отличаются лишь массы: второе тяжелее первого, третье тяжелее второго. Предполагается, что в природе встречаются в основном частицы первого поколения, а остальные можно создать искусственно на ускорителях заряженных частиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих Половинный спин частиц вещества, к истинно элементарным частицам относятся частицы со спином 1. Это кванты пйлей, создаваемых частицами вещества. Массивные W-бозоны являются переносчиками слабых взаимодействий между кварками и леп-тонами. Глюоны - переносчики сильных взаимодействий между кварками. Как и сами кварки, глюоны не обнаружены в свободном виде, но проявляются на Промежуточных стадиях некоторых реакций. Теория кварков и глюонов называется квантовой хромодинамикой.

Частица с предполагаемым спином 2 - это гравитон, его существование предсказано теоретически, но обнаружить его будет чрезвычайно трудно, так как он очень слабо взаимодействует с веществом.

Наконец, к истинно элементарным частицам относятся частицы Хиггса, или Н-мёзоны, и гравитино, они не обнаружены на опыте, но их существование предполагается во многих современных теоретических моделях.

Антивещество. У многих частиц существуют двойники в виде античастиц, с теми же массой, временем жизни, спином, но, отличающиеся знаками всех зарядив: электрического, барионного, лептонного и т.д. (электрон- позитрон, протон- антипротон и др). Существование античастиц было впервые предсказано в 1928 г. английским физиком-теоретиком П. Дираком. Из уравнения Дирака для релятивистского движения электрона следовало второе решение для его двойника, имеющего ту же массу, но положительный электрический заряд.

Характерная особенность поведения частиц и античастиц - их аннигиляция при столкновении. Типичный пример - взаимоуничтожение электрона и позитрона с выделением энергии при рождении двух фотонов.

В сильных и электромагнитных взаимодействиях имеется полная симметрия между частицами и античастицами - все процессы, протекающие с первыми, возможны и аналогичны для вторых. Подобно протонам и нейтронам их античастицы могут образовывать антиядра. В принципе можно представить себе и антиатомы, и даже большие скопления антивещества.

Классификация условно элементарных частиц. В соответствии с четырьмя видами фундаментальных взаимодействий различают соответственно четыре вида элементарных частиц: адроны, участвующие во всех взаимодействиях, лепстомы, не участвующие только в сильном (а нейтрино и в электромагнитном), фотон, участвующий только в электромагнитном взаимодействии, и гипотетический гравитон - переносчик гравитационного взаимодействия.

Адроны - общее название для частиц, наиболее активно участвующих в сильных взаимодействиях. Название происходит от греческого слова "сильный, крупный". Все адроны делятся на две большие группы - барионы и мезоны.

Барионы - это адроны с полуцелым спином. Самые известные из них - протон и нейтрон. Одним из свойств барионов, отличающим их от других частиц, можно считать наличие у них сохраняющегося барионного заряда, введенного для описания опытного факта постоянства во всех известных процессах разности между числом барионов и антибарионов.

Мезоны - адроны с целым спином. Их барионный заряд равен нулю. Адронов насчитывается около 350. Большинство из них крайне нестабильны и распадаются за время порядка 10-23 С. Столь короткоживущие частицы не могут оставить следов в детекторах. Обычно их рождение обнаруживают по косвенным признакам. Например, изучают реакцию аннигиляции электронов и позитронов с последующим рождением адронов. Изменяя энергию столкновения, обнаруживают, что при каком-то ее значении выход адронов резко увеличился. Данный факт можно объяснить тем, что в промежуточном состоянии родилась частица. Потом она мгновенно распадается на другие адроны, которые и регистрируются. Такие короткоживущие частицы называются резонансами. Большинство барионов и мезонов - резонансы.

Адроны не являются истинно элементарными частицами. Они имеют конечные размеры и сложную структуру. Барион состоит из трех кварков, мезоны построены из кварка и анти-кварка, кварки удерживаются внутри адронов глюонным полем. В принципе теория допускает существование других адронов, построенных из большего Числа или из одного глюонного поля.

Первоначально кварковая модель была предложена для наведения порядка в слишком многочисленном семействе адронов. Эта модель включила кварки трех типов или ароматов (в дальнейшем оказалось, что их больше). С помощью кварков удалось разделить адроны на группы, называемые мультиплетами. Частицы одного мультиплета имеют близкие массы.





Дата публикования: 2014-11-28; Прочитано: 471 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...