Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Физические поля Земли



План лекции

1.1.Форма и основные параметры Земли.

1.2. Гравитационное поле Земли.

1.3. Тепловое поле Земли.

1.4. Магнитное поле Земли.

Геология как наука, изучающая, прежде всего, нашу планету и ее верхнюю каменную оболочку, не оставляет без внимания и окружающей ильный мир - Вселенную. Это обусловлено тем, что в строении и Земли имеются определенные черты сходства и различия с планетами; некоторые геологические процессы непосредственно связаны с космическими явлениями.

Земля - типичная планета Солнечной системы – характеризуется наличием хорошо развитых внутренних и внешних оболочек.

1.1. Форма и основные параметры Земли

Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов. Форма планеты определяется ее вращением, соотношением сил притяжения и центробежной силы, плотностью вещества и его распределением в теле

Геодезические измерения показали, что упрощенная фирма Земли приближается к ЭЛЛИПСОИДУ ВРАЩЕНИЯ (СФЕРОИДУ). Полярный радиус Rn 6356,8 км, экваториальный - 6378,2 км, разница между радиусами составляет 21,4 км.

Детальные измерения показали, что Земля имеет более сложную форму. Эта фигура, свойственная только Земле, получила название ГЕОИДА. В любой точке геоида вектор силы тяжести перпендикулярен к его поверхности, которая может быть получена продолжением поверхности Мирового океана под континентами. Именно поверхность геоида принимается за базовую при отсчете высот в топографии, геодезии, маркшейдерии.

Геоид и сфероид не совпадают, и расхождения между положением их поверхностей достигает 160 км (в СССР 100 м). По наиболее точным последним данным, установлено, что Земля имеет грушевидную форму (т.е. сердцевидного) трехосного эллипсоида.

Масса Земли составляет 5,977 1021 т, объем 1,083 млрд.км3, площадь 510 млн. км2. Средняя плотность Земли равна 5,52 г/см3. Установлено, что внешняя, каменная часть земной коры имеет среднюю плотность 2,8 г/см3. Таким образом, чтобы общая плотность равнялась 5,52, внутренняя часть Земли должна быть плотнее, чем наружная. Возрастание плотности с глубиной можно объяснить различиями в составе и той огромной силой, с которой внешние части Земли давят на внутренние. Предполагается, что внутренне ядро имеет плотность около 13 г/см3,что, по-видимому соответствует состоянию металлического железа при этом давлении.

1.2. Гравитационное поле Земли

Физические поля, создаваемые планетой в целом и отдельными изолированными телами, определяются совокупностью присущих каждому физическому объекту свойств. Важное значение имеет изучение геофизических полей при исследовании физических свойств горных пород в образцах и массиве. Изучение свойств и интерпретация полученных данных должны базироваться на знании общих и локальных закономерностей строения физических полей Земли.

Огромная масса Земли является причиной существования сил

притяжения, которые воздействуют на вое тела и предметы, находящиеся на ее поверхности. Пространство, в пределах которого проявляются силы притяжения Земли, называется полем силы тяжести или гравитационным полем (лат."гравитас"-тяжесть).Оно отражает характер распределения масс в недрах и тесно связано с фигурой Земли. Для каждой точки земной поверхности характерна своя величина силы тяжести, в центре Земли сила тяжести равна нулю.

Сила тяжести численно равна равнодействующей силы притяжения и центробежной силы Р, действующих на единицу массы вещества

В системе СGS величина силы тяжести выражается в галлах (см/сек В практике часто используются одной тысячной долей гала-миллигалом. Сила тяжести зависит от высотного положения местности, так как при этом изменяется расстояние до

центра Земли. Поэтому измерения силы тяжести принято приводить к одному

уровню, например уровню геоида или эллипсоида. Значение силы тяжести на поверхности Земли возрастает от экватора к полюсам с 978,049 до 963,235 гал. Среднее значение силы тяжести на поверхности геоида 981 гал.

величина силы тяжести зависит не только от высотного положения, но и от географической широты местности. На нее оказывает влияние и неравномерное распределение масс в недрах Земли. По этой причине возникают местные отклонения в значениях силы тяжести от теоретически вычисленных ее значений. Такие отклонения называются гравитационными аномалиями.

Различают положительные и отрицательные гравитационные аномалии. Положительные наблюдаются в том случае, когда в недрах земной коры залегают плотные массы (железные руды); отрицательные вызываются залеганиями легких масс (гипс, калийная соль).Гравитационные аномалии выявляются с помощью гравиметров, маятниковыми приборами. По результатам измерений составляют гравиметрические карты, на которых с помощью изолиний показываются аномалии силы тяжести в миллигалах.

Изменения силы тяжести могут быть вызваны некоторыми явлениями, известными из астрономии, например замедлением или ускорением вращении Земли вокруг своей оси, изменениями фигуры и плотности Земли.

1.3. Тепловое поле Земли

Тепловое поле Земли образуется за счет внешних и внутренних источников. Главным источником внешней энергии является солнечное излучение. Лучистая энергия Солнца, получаемая земной поверхностью за год составляет5,44*10Дж. Около 55 % ее поглощается атмосферой, растительным покровом, почвой. Остальное количество энергии отражается в космос.

Источниками внутреннего тепла Земли являются следующие: радиоактивный распад элементов; энергия гравитационной дифференциации вещества; остаточное тепло и т.д

Получаемое солнечное тепло непосредственно нагревает горные породы и проникает лишь на небольшую глубину. Температура поверхности слоев изменяется в течение суток, сезона и года. С глубиной амплитуды колебания температуры убывают: сначала исчезает влияние суточных колебаний температуры воздуха, затем сезонных и, наконец, годовых. На некоторой глубине температура пород остается постоянной годы - пояс постоянной температуры. Выше него располагаются слои многолетних, сезонных и суточных колебаний.

Глубина залегания пояса постоянных температур меняется с широтой местности и с изменением теплофизических свойств в горных пород. В приэкваториальных областях пояс постоянной температуры достигнет 1-2 м, в средних широтах 20-30 м (в Москве - 20 м).

Постоянная температура этого пояса примерно равна средней годовой температуре приземного слоя данной местности (для Москвы +4,2°С, для Парижа +I8 ).Если среднегодовая температура местности ниже 0 , то атмосферные осадки и подземные воды превращаются в лед. Таково основное условие образования "вечной мерзлоты".

Начиная с пояса постоянных температур, отмечается постоянное повышение температуры пород с глубиной, которые характеризуется геотермической ступенью и геотермическим градиентом. ГЕОТЕРМИЧЕСКАЯ СТУПЕНЬ - численно равна количеству метров, на которое нужно углубиться для того, чтобы температура пород поднялась на 1 и имеет размерность м/град. ГЕОТЕРМИЧЕСКИЙ ГРАДИЕНТ - величина обратная и численно равен числу градусов, на которое повышается температура горных пород при углублении на 100 м (м/град).

Геотермическая ступень в среднем принимается равной 33 м/град, но ее значение в различных пунктах колеблется в широких пределах от 2 до 250 м/град. Часто величина геотермической ступени значительно отклоняется на различных глубинах одного и того же пункта. Это зависит: от различной теплопроводности и условий залегания горных пород, подземных вод, удаленности от морей и океанов, рельефа местности, геохимических условий.

Наибольшая температура пород в подземных горных выработках равна С и наблюдалась в медных рудниках Магны (США) на глубине 1200 м. Температура пород в шахтах Донбасса на глубине 800-1000 превышает , а на глубине 1545 м достигает 56,3 . Для освоения залежей полезных ископаемых, залегающих на больших глубинах и в районе многолетней мерзлоты, необходимо регулировать тепловой режим глубоких шахт и рудников.

1.4. Магнитное поле Земли

Вокруг земного шара и внутри его существуют магнитные поля. По данным космических исследований, оно простирается за пределы планеты на расстояние, превышающее десятикратный радиус Земли, образуя магнитосферу. Установлена сложная ассиметричная внешняя форма магнитосферы, непрерывно изменяющаяся по форме и силе. Со стороны Земли, освещенной Солнцем, магнитосфера значительно сжата, а с противоположной стороны - вытянута с образованием магнитного шлейфа.

Ассиметричность магнитосферы обусловлена воздействием солнечного ветра (космического излучения).

По данным I960 г граница магнетизма располагается на высоте 93 тыс.км. Величина магнитного поля Земли убывает примерно до высоты 43 тыс.км пропорционально кубу расстояния. В околоземном пространстве, за пределами земного магнетизма, существует магнитное поле межпланетного пространства. Природа магнитного поля Земли в настоящее время окончательно не выяснена. Известно, что воздействие на него процессов, происходящих в высоких слоях атмосферы, невелико и не превышает 6 %. На этом основании полагают, что магнитное поле связано с процессами, протекающими в глубоких недрах Земли. Магнитное поле влияет на ориентировку ферромагнитных минералов (магнетита, ильменита, гематита) в горных породах. Сильнее всего реагируют на магнитное поле ультраосновные и основные изверженнее (базальты, габбро) и красноцветные пески. Осадочного генезиса.

Полюса магнитного поля Земли не совпадают с географическими полюсами.

Основные характеристики магнитного поля следующие:

МАГНИТНОЕ СКЛОНЕНИЕ - угол между осью магнитной стрелки магнитным меридианов и географическим меридианом.

МАГНИТНОЕ НАКЛОНЕНИЕ - угол наклона магнитной стрелки к горизонту.

СИЛА магнитного поля Земли выражается векторной величиной - МАГНИТНЫМ НАПРЯЖЕНИЕМ. Единицей измерения магнитной напряженности является одна стотысячная доля эрстеда, называемая гаммой ().

Отклонения элементов магнитного поля Земли называются магнитными аномалиями. Они обусловлены или залеганием больших магнитных масс (железные руды) или же нарушениями однородности геологического строения.

Самой крупной магнитной аномалией в мире, вызванной залеганием больших магнитных масс является КМА.

Изучение магнитного поля Земли широко используется для поисков месторождений полезных ископаемых, в том числе нефтяных и газовых.





Дата публикования: 2014-11-28; Прочитано: 6591 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...