Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

ЛЕКЦИЯ №4. Электронные аналоговые приборы и преобразователи представляют собой средства измерений, в которых преобразование сигналов измерительной информации

ЭЛЕКТРОННЫЕ АНАЛОГОВЫЕ ПРИБОРЫ И ПРЕОБРАЗОВАТЕЛИ

Электронные аналоговые приборы и преобразователи представляют собой средства измерений, в которых преобразование сигналов измерительной информации осуществляется с помощью аналоговых электронных устройств. Выходной сигнал таких средств является непрерывной функцией измеряемой величины. Электронные приборы и преобразователи применяют при измерениях практически всех электрических величин: напряжения, тока, частоты, мощности, сопротивления и т.д.

Достоинства электронных измерительных приборов:

1) высокая чувствительность обусловлена применением усилителей;

2) малое потребление энергии из цепи, в которой производят измерение, что определяется высоким входным сопротивлением данных приборов;

3) широкий диапазон частот, в котором чувствительность неизменна.

Недостатки:

1) сложность, обусловленная большим числом деталей и элементов;

2) необходимость в источниках питания электронных устройств, входящих в прибор;

3) сравнительно невысокая надежность, обусловленная большим числом элементов.

ЭЛЕКТРОННЫЕ ВОЛЬТМЕТРЫ

В электронных вольтметрах измеряемое напряжение преобразуется с помощью аналоговых электронных устройств в постоянный ток, который подается на магнитоэлектрический измерительный механизм со шкалой, градуированный в единицах напряжения. Электронные вольтметры обладают высокой чувствительностью и широким диапазоном измеряемых напряжений (от десятков нановольт на постоянном токе до десятков киловольт), большим входным сопротивлением (более 1 Мом), могут работать в широком частотном диапазоне (от постоянного тока до частот порядка сотен МГц).

Существуют множество различных типов вольтметров. По своему назначению и принципу действия наиболее распространенные вольтметры могут быть подразделены на вольтметры постоянного тока, переменного тока, универсальные, импульсные и селективные.

Вольтметры постоянного тока. Упрощенная структурная схема таких вольтметров показана на рис. 5.1, где ВД – входной делитель напряжения; УПТ – усилитель постоянного тока; ИМ – магнитоэлектрический измерительный механизм; Ux – измеряемое напряжение.

Рис. 5.1. Структурная схема электронного вольтметра постоянного тока

Последовательное соединение делителя напряжения и усилителя позволяет делать вольтметры высокочувствительными и многопредельными за счет изменения в широких пределах их общего коэффициента преобразования. Повышение чувствительности вольтметров постоянного тока путем увеличения коэффициента усиления УПТ kУПТ наталкивается на технические трудности из-за нестабильности работы УПТ, характеризующейся изменением kУПТ и самопроизвольным изменением выходного сигнала усилителя (дрейф "нуля"). Поэтому в таких вольтметрах kУПТ ≈1, а основное назначение УПТ – обеспечить большое входное сопротивление вольтметра.

Данная структурная схема вольтметра постоянного тока используется в составе универсальных вольтметров, поскольку при незначительном усложнении – добавлении преобразователя переменного напряжения в постоянное, появляется возможность измерения и переменного напряжения.

Вольтметры переменного тока. Такие вольтметры состоят из преобразователя переменного напряжения в постоянное, усилителя и магнитоэлектрического измерительного механизма. Возможны две обобщенные структурные схемы вольтметров переменного тока (рис. 5.2), различающиеся своими характеристиками. В вольтметрах по схеме рис. 5.2, а измеряемое напряжение uх, сначала преобразуется в постоянное напряжение, которое затем подается на УПТ и ИМ, являющиеся, по существу, вольтметром постоянного тока. Преобразователь Пр представляет собой нелинейное звено, поэтому вольтметры с такой структурой могут работать в широком частотном диапазоне. В то же время указанные недостатки УПТ и особенности работы нелинейных элементов при малых напряжениях не позволяют делать такие вольтметры высокочувствительными.

Рис. 5.2. Структурные схемы вольтметров переменного тока

В вольтметрах, выполненных по схеме рис. 5.2, б, благодаря предварительному усилению удается повысить чувствительность. Однако создание усилителей переменного тока с большим коэффициентом усиления, работающих в широком диапазоне частот, – трудная техническая задача. Поэтому такие вольтметры имеют относительно низкий частотный диапазон (1 – 10 МГц).

Различают вольтметры амплитудного, среднего или действующего значения.

Рис. 5.3. Схема (а) и временная диаграмма сигналов преобразователя амплитудных значений (пикового детектора) с открытым входом

Вольтметры амплитудного значения имеют преобразователи амплитудных значений (пиковые детекторы) с открытым (рис. 5.3, а) входом, где uвх и uвых – входное и выходное напряжение преобразователя. Если вольтметр имеет структуру рис. 5.3, а, то для преобразователя uвх = uх. В амплитудных преобразователях с открытым входом конденсатор заряжается практически до максимального uхmax положительного (при данном включении диода) значения входного напряжения (рис. 5.3,б). Пульсации напряжения uвых на конденсаторе объясняются его подзарядом при открытом диоде, когда uвх > uвых, и его разрядом через резистор R при закрытом диоде, когда uвх < uвых.

Универсальные вольтметры. Такие вольтметры предназначены для измерения напряжений постоянного и переменного токов. Обобщенная структурная схема показана на рис. 5.4, где В – переключатель. В зависимости от положения переключателя В вольтметр работает по схеме вольтметра переменного тока с преобразователем П (положение 1) или вольтметра постоянного тока (положение 2).

Рис. 5.4. Структурная схема универсального вольтметра

В универсальных вольтметрах, называемых также комбинированными, часто предусматривается возможность измерения сопротивлений Rх. В таких вольтметрах имеется преобразователь ПR, выходное напряжение которого зависит от неизвестного сопротивления: Uвых = f(Rx). На основании этой зависимости шкала прибора градуируется в единицах сопротивления. При измерении резистор с неизвестным сопротивлением подключается к входным зажимам преобразователя, а переключатель ставится в положение 3.

Импульсные вольтметры. Для измерения амплитуды импульсных сигналов различной формы применяют импульсные вольтметры. Особенности работы импульсных вольтметров определяются малой длительностью τ измеряемых импульсов (от 10-100 нс) и значительной скважностью (до 109), где Т – период следования импульсов.

Импульсные вольтметры могут быть выполнены по структурной схеме рис. 5.2, а, при этом используют преобразователи амплитудных значений с открытым входом (рис. 5.3, а). Большая скважность импульсов и малая их длительность предъявляют жесткие требования к преобразователям амплитудных значений. Поэтому в импульсных вольтметрах применяют компенсационные схемы амплитудных преобразователей (рис. 5.5).

Рис. 5.5. Компенсационная схема амплитудного преобразователя

Входные импульсы uвх заряжают конденсатор С1. Переменная составляющая напряжения на этом конденсаторе, вызванная подзарядом его измеряемыми импульсами и разрядом между импульсами (аналогично рис. 5.3, б), усиливается усилителем У переменного тока и выпрямляется с помощью диода D2. Постоянная времени цепи RC2 выбирается достаточно большой, поэтому напряжение на конденсаторе С2 в промежутке между импульсами изменяется незначительно. С выхода преобразователя при помощи резистора Rо.с. обратной связи на конденсатор С1 подается компенсирующее напряжение. При большом коэффициенте усиления усилителя это приводит к значительному уменьшению переменной составляющей напряжения на конденсаторе С1, вследствие чего в установившемся режиме напряжение на конденсаторе практически равно амплитуде измеряемых импульсов, а выходное напряжение пропорционально этой амплитуде: .

Селективные вольтметры. Такие вольтметры предназначены для измерения действующего значения напряжения в некоторой полосе частот или действующего значения отдельных гармонических составляющих измеряемого сигнала.

Принцип действия селективного вольтметра заключается в выделении отдельных гармонических составляющих сигнала или сигнала узкой полосы частот с помощью перестраиваемого полосового фильтра и измерении действующего значения выделенных сигналов.

Физически реализуемый полосовой фильтр не обладает строго прямоугольной амплитудно-частотной характеристикой (АЧХ). Это может привести к тому, что через такой фильтр пройдут соседние гармонические составляющие с некоторым коэффициентом передачи. В этом случае селективный вольтметр измеряет действующее значение суммы гармонических составляющих, прошедших через фильтр, с учетом реальных коэффициентов передачи для каждой составляющей.

Рис. 5.6. Структурная схема селективного вольтметра

Измеряемый сигнал uх через избирательный входной усилитель ВУ подается на смеситель См, предназначенный для преобразования частотного спектра измеряемого сигнала. На выходе смесителя появляется сигнал, пропорциональный измеряемому сигналу, но с частотами спектра , где - частота гармонических составляющих входного сигнала; - частота сигнала синусоидального генератора Г (гетеродина). Усилитель промежуточной частоты УПЧ настроен на некоторую фиксированную частоту . Поэтому на выход УПЧ пройдет только та составляющая выходного сигнала смесителя, частота которой . Этот сигнал соответствует гармонической составляющей измеряемого сигнала с частотой . Действующее значение этой гармонической составляющей измеряется вольтметром действующего значения ВДЗ. Изменяя частоту генераторов , можно измерять действующее значение различных гармонических составляющих сигнала uх.

Функцию полосового фильтра в этой схеме выполняет УПЧ. Благодаря фиксированному (неперестраиваемому) значению частоты настройки УПЧ этот усилитель имеет большой коэффициент усиления и узкую полосу пропускания, что обеспечивает высокую чувствительность и избирательность селективного вольтметра.

ЛЕКЦИЯ №4

СИГНАЛЫ ИМПУЛЬСНЫХ И ЦИФРОВЫХ УСТРОЙСТВ

Сигналом называют физический процесс, несущий информацию. Сигналы могут быть звуковыми, световыми, электрическими.

Информация сосредоточена в изменениях параметров физического процесса.

Различают аналоговые и цифровые сигналы. Обычно аналоговые сигналы являются непрерывными. Устройства, в которых действуют такие сигналы, называют аналоговыми. Цифровым сигналом представляются двоичные числа, поэтому он состоит из элементов только двух различных значений. Одним из них представляется 1, а другим – 0.

Устройства, в которых действуют цифровые сигналы, называют цифровыми. Цифровые сигналы используются в устройствах различного назначения. В цифровой автоматике входная информация представляется цифровыми сигналами, над которыми эти устройства осуществляют необходимые действия.

В системах радиосвязи цифровыми сигналами передаются сообщения, имеющие разную форму: звуковую, печатную, форму изображения и т.д. Такая связь отличается скрытностью и помехоустойчивостью.

Последнее обусловлено тем, что такой сигнал имеет только два различимых уровня. Поэтому, когда значение сигнала попадает между ними, то это фиксируется как помеха.

Непрерывный сигнал очистить от помехи значительно сложнее. Мгновенные значения непрерывного сигнала, разделенные бесконечно малым временным интервалом, отличаются на бесконечно малую величину, т.е. непрерывный сигнал имеет несчетное (бесконечное) количество значений. Поэтому, искаженный помехой, он может быть принят за полезный.

Цифровой сигнал может быть потенциальным или импульсным.

Элементами потенциального цифрового сигнала являются потенциалы двух уровней. Каждый уровень остается неизменным в течение так называемого тактового интервала; на его границе уровень потенциала изменяется, если следующая цифра двоичного числа отличается от предыдущей. На рис. 4.1, а изображен потенциальный цифровой сигнал, представляющий написанное сверху число; высоким потенциалом отображается 1, а низким – 0.

Элементами импульсного цифрового сигнала являются импульсы неизменной амплитуды и их отсутствие. На рис. 4.1, б положительный импульс представляет 1, а отсутствие импульса представляет 0 написанного сверху двоичного числа.

Рис. 4.1. Представление цифрового сигнала

Обоими цифровыми сигналами (рис. 4.1) двоичное число 10011010 выражено в последовательной форме (последовательным кодом): разряды числа представляются последовательно, друг за другом. При этом потенциалы (импульсы), соответствующие разрядам числа, передаются по одной линии и обрабатываются устройством последовательно.

При представлении двоичного числа в параллельной форме (параллельным кодом) его разряды представляются одновременно. При этом количество линий передачи, а также однотипных элементов устройства, обрабатывающих цифровой сигнал, должно быть равно количеству разрядов числа, т.е. существенно увеличивается. Такой цифровой сигнал значительно обрабатывается устройством.

Цифровой сигнал может быть сформирован из непрерывного сигнала аналого-цифровым преобразователем (АЦП), который нередко называют преобразователем аналог-код или аналог-цифра. Такое преобразование сводится к тому, что из непрерывного сигнала периодически производятся выборки мгновенных значений; каждая выборка округляется до ближайшего разрешенного уровня, а код этого уровня (двоичное число) представляется элементами цифрового сигнала. Совокупность таких двоичных чисел, выраженных элементами цифрового сигнала, – цифровой сигнал, соответствующий преобразуемому непрерывному сигналу.

Рассмотрим переход от дискретного сигнала к цифровому. Вес диапазон возможных изменений непрерывного сигнала разбивается на конечное число равноотстоящих уровней (называемых уровнями квантования), которым дискретный сигнал только и может принимать. Каждая выборка сигнала округляется до ближайшего разрешенного уровня (рис. 4.2). Эта операция называется квантованием сигнала по уровню и по времени.

Рис. 4.2. Переход от дискретного сигнала к цифровому

Квантованный дискретный сигнал имеет конечное (счетное) количество значений. Благодаря этому каждому из них может быть присвоен какой-то код (число). Эту операцию называют кодированием.

Обратное преобразование цифрового сигнала в непрерывный осуществляется цифроаналоговым преобразователем (ЦАП). На входы такого преобразователя одновременно поступают потенциалы, представляющие разряды каждой выборки. Потенциалы, соответствующие единицам, открывают ключи, через которые на выход поступают напряжения, пропорциональные весам единиц разрядов. Так на выходе формируется напряжение, пропорциональное весу каждой выборки.

ЦИФРО-АНАЛОГОВЫЕ И АНАЛОГО-ЦИФРОВЫЕ ПРЕОБРАЗОВАТЕЛИ

Преобразование аналоговой величины в цифровой код применяется довольно часто: в цифровых приборах с индикацией результатов измерения в десятичном счислении, для ввода в цифровой форме параметров технологического процесса в ЭВМ, которая не допускает их выхода за установленные пределы, при передаче информации по линии с целью повышения ее помехозащищенности и т.д.

Обратное – цифроаналоговое – преобразование в ряде случаев сопровождает аналого-цифровое. Кроме того, их сочетание позволяет осуществить цифровую обработку аналоговой величины, предварительно преобразованной в цифровую форму, и последующее преобразование к исходному аналоговому виду.

Аналого-цифровые преобразователи. АЦП преобразует аналоговый сигнал в цифровой.

АЦП времяимпульсного типа. Принцип преобразования такого типа заключается в том, что входному напряжению Uвх ставится в соответствие временной интервал, длительность которого пропорциональна Uвх. Этот интервал заполняется импульсами стабильной частоты. Число их и представляет цифровой эквивалент преобразуемого напряжения.

Схема, реализующая указанный принцип, изображена на рис. 4.3, а. Импульс с выхода генератора тактовых импульсов (ГТИ) обнуляет счетчик, запускает генератор линейно изменяющегося напряжения (ГЛИН) и переключает триггер в состояние Q =1. Сигналом Q =1 генератор счетных импульсов (ГСИ) через элемент И подключается к счетчику. Когда нарастающее напряжение ГЛИН станет равным преобразуемому напряжению Uвх, на выходе компаратора появится логическая 1, которая переключит триггер в состояние Q =0 и прервет связь ГСИ с счетчиком. Код, устанавливающийся на выходе счетчика, – цифровой эквивалент аналоговой величины (входного напряжения). С изменением Uвх изменяется и код на выходе счетчика.

Временные диаграммы на рис. 4.3, б иллюстрируют описанные процессы. На выходе триггера формируются "временные ворота". Начало их соответствует тактовому импульсу, а конец – появлению 1 на выходе компаратора, когда наступает равенство uГЛИН = Uвх. Таким образом, длительность "временных ворот" пропорциональна значению входного напряжения. "Временные ворота" заполняются счетными импульсами стабильной частоты, поэтому их число пропорционально значению Uвх.

Рис. 4.3. АЦП времяимпульсного типа

АЦП последовательного счета. Работа такого преобразователя сводится к следующему. Счетные импульсы заполняют счетчик, на выходе которого формируется код с нарастающим весом. Этот код поступает на ЦАП, напряжение на выходе которого увеличивается. Когда оно сравняется с входным напряжением, доступ импульсов к счетчику прекращается. Код, устанавливающийся при этом на счетчике, является цифровым эквивалентом напряжения на выходе ЦАП, а следовательно, и напряжения Uвх.

Рис. 4.4. АЦП последовательного счета

Схема, реализующая описанный принцип, изображена на рис. 4.4. Преобразование начинается с обнуления счетчика импульсом генератора тактовых импульсов (ГТИ). После этого напряжение на входе ЦАП становится равным нулю – на выходе компаратора логическая 1, обеспечивающая поступление счетных импульсов (ГСИ) через элемент И на счетчик. Когда напряжение на выходе ЦАП станет практически равным Uвх, компаратор переключится и логическим 0 на выходе разъединит ГСИ и счетчик.


Дата публикования: 2014-11-29; Прочитано: 767 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...