Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Пример 14



Найти собственные векторы и собственные значения линейного оператора, заданного в некотором базисе симметрической матрицей

.

Решение

Искомый собственный вектор удовлетворяет характеристической системе

Собственные значения удовлетворяют уравнению .

После раскрытия определителя получаем алгебраическое уравнение 3-й степени: , где ,

, , ,

.

Приходим к уравнению вида:

Получаем собственные значения – все действительные и различные.

Строим собственные векторы. Значение подставляем в характеристическую систему:

Ее определитель равен нулю, и, следовательно, ранг системы (т.к. минор ). Система равносильна системе:

или

, , .

По правилу Крамера . Полагаем и получаем 1-й собственный вектор . Можно взять и тогда .

Аналогично значение подставляем в характеристическую систему:

Вновь система равносильна двум уравнениям:

т. к. минор и . Находим решения системы по формулам Крамера:

; ; .

Получаем координаты второго собственного вектора: . Полагаем и , . Можно взять и тогда .

Далее берем и подставляем в характеристическую систему:

, ,

. Получим 3-й собственный вектор . Можно взять , тогда .

Ответ: , , , .

Заметим, что построенные векторы взаимно перпендикулярны в пространстве, т. к. , , .

Собственные векторы можно нормировать:

, , – эти три вектора образуют ортонормированный базис в 3-х мерном пространстве.

Показать, что матрица линейного оператора в базисе из собственных векторов будет иметь диагональную форму: .





Дата публикования: 2014-11-18; Прочитано: 320 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...