Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Гидротурбины



Основным энергетическим оборудованием ГЭС являются гид­ротурбины и генераторы.

Рис. 2.4.5. Общий вид рабочих колес гидротурбин:

а – принцип работы и общий вид ковшовой турбины;

1 – бассейн верхнего уровня (бьефа); 2 – турбинный трубопровод; 3 – сопло; 4 – рабочее колесо; 5 – кожух; 6 – регулировочная игла; 7 – лопасти (ковши);

б – радиально – осевое; в – пропеллерное; г – поворотнолопастное; д – двухперовое; е – диагональное

Гидравлической турбиной называется машина, преобразующая энергию движения воды в механическую энергию вращения ее рабочего колеса. Гидротурбины разделяют на два класса: активные и реактивные. Турбина называется активной, если используется только кинетическая энергия потока, и реактивной, если используется и потенциальная энергия при реактивном эффекте.

Наиболее распространенными активными гидротурбинами являются ковшовые (рис. 2.4.5, а).

В ковшовой активной турбине потенциальная энергия гидроста-тического давления в суживающейся насадке – сопле – полностью прев-ращается в кинетическую энергию движения воды. Рабочее колесо турбины выполнено в виде диска, по окружности которого расположены ковшеобразные лопасти 7 (рис. 2.4.5, а).

Вода, огибая поверхности лопастей, меняет направление движения. При этом возникают центробежные силы, действующие на поверхности лопастей, и энергия движения воды преобразуется в энергию вращения колеса турбины.

Если скорость движения воды, вытекающей из турбины, равна нулю, то вся кинетическая энергия воды, не считая потерь, превращается в механическую энергию турбины.

Внутри сопла расположена регулирующая игла 6 (рис. 2.4.5, а) перемещением которой меняется выходное сечение сопла, а следова-тельно, и расход воды.

В реактивной гидравлической турбине на лопастях рабочего колеса преобразуется как кинетическая, так и потенциальная энергия воды в механическую энергию турбины. Вода, поступающая на рабочее колесо турбины, обладает избыточным давлением, которое по мере протекания воды по проточному тракту рабочего колеса уменьшается. При этом вода оказывает реактивное давление на лопасти турбины и слагающая потенциальной энергии воды превращается в механическую энергию рабочего колеса турбины.

За счет кривизны лопастей изменяется направление потока воды, при котором, как и в активной турбине, кинетическая энергия воды в результате действия центробежных сил превращается в механическую энергию турбины. Рабочее колесо реактивной турбины в отличие от активной полностью находится в воде, т.е. поток воды поступает одновременно на все лопасти рабочего колеса. Различные конструкции рабочих колес реактивных турбин показаны на рис. 2.4.5, б – е.

У радиалъноосевых турбин лопасти рабочего колеса имеют сложную кривизну, поэтому вода, поступающая с направляющего аппарата, постепенно меняет направление с радиального на осевое. Такие турбины используют в широком диапазоне напоров от 30 до 600 м. В настоящее время созданы уникальные радиально-осевые турбины мощностью

700 МВт.

Пропеллерные турбины обладают простой конструкцией и высоким КПД, однако у них с изменением нагрузки КПД резко уменьшается.

У поворотнолопастных гидротурбин в отличие от пропеллерных лопасти рабочего колеса поворачиваются при изменении режима работы для поддержания высокого значения КПД.

Двухперовые турбины имеют спаренные рабочие лопасти, что поз-воляет повысить расход воды. Широкое применение их ограничено конструктивными сложностями. Сложная конструкция свойственна также диагональным турбинам, у которых рабочие лопасти поворачиваются относительно своих осей.

Радиально – осевые турбины установлены на Братской, Красноярской ГЭС и др. Поворотно-лопастными турбинами оборудованы Куйбышев-ская, Волгоградская и Кременчугская ГЭС и др.

На электрических станциях турбина и генератор связаны общим валом. Частоты их вращения не могут выбираться произвольно. Они зависят от числа пар полюсов ротора генератора и частоты переменного тока, которая должна соответствовать стандартной. Кроме того, необходимо учитывать, что при небольших частотах вращения турбины получаются громоздкими и дорогими. Чтобы получить скорости агрегатов, близкие к оптимальным, при больших напорах используют турбины с малыми значениями коэффициента быстроходности, а при небольших напорах – с большими значениями этого коэффициента.

Разнообразие природных условий, в которых сооружаются ГЭС, определяет разнообразие конструктивного исполнения тур­бин. Мощности турбин изменяются от нескольких киловатт до 640 МВт, а частота вращения — от 16 2/3 до 1500 мин-1.

В последнее время стали применяться горизонтальные агрегаты (капсульные), в которых генератор заключен в герметичную капсулу, об-текаемую водой. КПД таких агрегатов выше (95 – 96 %) благодаря лучшим гидравлическим условиям обтекания.

При сооружении ГЭС обычно решают комплекс народнохозяйст-венных задач, в который помимо выработки электрической энергии входят регулирование стока воды и улучшение судоходства реки, создание орошаемых массивов, развитие энергоемких производств, использующих местное сырье, и т.д.

В настоящее время на равнинных реках сооружают станции, напор которых достигает 100 м, например на Братской ГЭС, построенной на Ангаре, и на Асуанской ГЭС, построенной в Египте.

На рис. 2.4.6 показана Саяно-Шушенская ГЭС на реке Енисее, у ко-торой высота плотины составляет 240 м и вода по водоводам поступает к 10 турбинам, вращающим электрические генераторы мощностью по 640 МВт каждый.

Рис. 2.4.6. Общий вид Саяно – Шушенской ГЭС

(приплотинного типа с напором 240 м, мощностью 640 МВт)





Дата публикования: 2014-11-26; Прочитано: 1525 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...