Студопедия.Орг Главная | Случайная страница | Контакты | Заказать
 

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ГЕНОВ



Уже в начале XX в. было признано, что законы Г. Менделя носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака – форма пыльцы и окраска цветков – не дают независимого распределения в потомстве: потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределе­ния в потомстве и свободного комбинирования распространяется не на все гены. Объясняется это тем, что у любого организма признаков и соответственно генов очень много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен выдающимся американским генетиком Т. Морганом.

Предположим, что два гена – А и В находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафа­зе первого мейотического деления гомологичные хромосомы расходятся в разные клетки, и образуются два сорта гамет вместо четырех, как должно было быть при дигибридном скрещивании в соответствии с третьим зако­ном Менделя.

При скрещивании с гомозиготным организмом, рецессивным по обоим генам, aabb получается расщепление 1:1 вместо ожидаемого при дигибридном анализирующем скрещивании 1:1:1:1. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно. Например, у плодовых мух дрозофил нормальную серую окраску тела определяет доминантный ген. Его рецессивный аллель в гомозиготном состоянии обусловливает развитие черной окраски. У этих мух существует также рецессивная мутация, вызывающая недоразвитие крыльев («зачаточные крылья»). Доминантный ген этой аллельной пары обеспечивает нормальное развитие крыльев. Если скрестить гомозиготную дрозофилу, имеющую серое тело и нормальные крылья, с мухой, обладающей темной окраской тела и зачаточными крыльями, то в первом поколении все гибриды будут серыми с нормальными крыльями.

При анализирующем скрещивании гибрида F1 с гомозиготной рецессивной дрозофилой (темное тело, зачаточные крылья) подавляющее большинство потомков F2 будет сходно с родительскими формами (рис. 21).

Рис. 21. Наследственные признаки дрозофилы.

Явление совместного наследования генов, локализованных в одной хромосоме, называется сцепленным наследованием, а локализация генов в одной хромосоме – сцеплением генов. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Все гены, входящие в одну хромосому, передаются по наследству совместно и составляют группу сцепления. Поскольку в гомологичных хромосомах находятся одинаковые гены, группу сцепления образуют две гомологичные хромосомы. Число групп сцепления соответствует числу хромосом в гаплоидном наборе. Так, у человека 46 хромосом – 23 группы сцепления, у дрозофилы 8 хромосом – 4 группы сцепления, у гороха 14 хромосом – 7 групп сцепления.

В пределах групп сцепления в профазе первого мейотического деления вследствие кроссинговера происходит рекомбинация (перекомбинирование) генов. Поэтому при анализе наследования сцепленных генов было обнаружено, что в некотором проценте случаев, строго определенном для каждой пары генов, сцепление может нарушаться.

В профазе первого мейотического деления гомологичные хромосомы конъюгируют. В этот момент между ними может произойти обмен участками:

Если проследить распределение в потомстве двух генов А и В, то в результате расхождения гомологичных хромосом в анафазе первого мейо­тического деления дигетерозиготный организм в случае сцепления генов А и В должен давать два сорта гамет: АВ и ab. Однако если в результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы АЬ и аВ, и в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Отличие заключается в том, что числовое отношение фенотипов не соответствует отношению 1:1:1:1, установленному для дигибридного анализирующего скрещивания (рис. 22).

Рис. 22. Схема образования гамет разных сортов.

Если вернуться к примеру со скрещиванием различных наследственных форм дрозофил, в ряде случаев в потомстве F2 в значительно меньшем количестве, чем особей, схожих по фенотипу с родителями, появляются серые мухи с рудиментарными крыльями и темноокрашенные мухи с нормальными крыльями. Появление таких рекомбинантных особей (по 8,5% каждого типа) обусловлено нарушением сцепления генов. Таким образом, сцепление генов может быть полным и неполным.

Причиной нарушения сцепления служит кроссинговер – перекрест хромосом в профазе первого мейотического деления. Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больше процент гамет с перекомбинированием генов, а следовательно, и больший процент особей, отличных от родителей.

Кроссинговер, таким образом, служит важным источником комбинативной генетической изменчивости. В генетике принято расстояние между генами, расположенными в одной хромосоме, определять в процентах гамет, при образовании которых в результате кроссинговера произошла перекомбинация генов в гомологичных хромосомах. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1% кроссинговера. В честь Т. Моргана она названа морганидой. В нашем примере расстояние между генами, определяющими окраску тела дрозофилы и раз­витие крыльев, равно 17% кроссинговера, или 17 морганидам.

Методом анализирующего скрещивания были определены расстояния между многими генами и последовательность их расположения в хромосомах у разных видов животных и растительных организмов. Так были построены карты групп сцепления генов и доказано линейное расположение генов в хромосомах, К числу наиболее изученных в этом отношении животных организмов относятся дрозофила, комнатная муха, шелкопряд, мышь; из растений – кукуруза, пшеница, ячмень, рис, горох, хлопчатник и многие другие. Интенсивно изучаются генетические карты низших организмов. Несмотря на трудности успешно картируются хромосомы человека. Эта трудоемкая работа не только имеет познавательный интерес, но послужила предпосылкой развития методов генетической инженерии, находящих все большее применение для реализации различных потребностей человека.





Дата публикования: 2014-11-19; Прочитано: 82 | Нарушение авторского права страницы | Заказать написание работы



studopedia.org - Студопедия.Орг - 2014-2017 год. (0.005 с)...Наверх