Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Термолабильность

  Первая буква фамилии
А - З З - О П - Ц Ч - Я
Тип фундамента Ленточный Отметка заложения -2,500 м Нагрузка на фундамент 700 кН/м Столбчатый Отметка заложения -3,000 м Нагрузка на фундамент 5000 кН Плитный Отметка заложения -2,000 м Свайный Отметка оголовка -3,000 м Длина сваи 10 м Нагрузка на фундамент

Термолабильность

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

2) Температурным оптимум- температура, при которой каталитическая активность фермента максимальна.

Температурный оптимум для различных ферментов неодинаков. Для ферментов животного происхождения он лежит между 40 и 50°С, а растительного- между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 80°С.В то же время у каталазы оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

3) Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты.

4)Специфичность -одно из наиболее выдающихся качеств ферментов. Это свойство было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества - пространственные изомеры расщепляются по эфирной связи двумя совершенно разными ферментами. По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 году.

Специфичность и механизм действия ферментов

Действие фермента, в отличие от неорганических катализаторов, строго специфично и зависит от строения субстрата, на который фермент действует. Прекрасным примером такой зависимости служит катализируемая аргиназой реакция гидролитического расщепления аминокислоты аргинина на орнитин и мочевину:

Однако аргиназа не расщепляет метилового эфира аргинина:

Дипептид, состоящий из остатков двух молекул аргинина, под действием аргиназы даёт лишь половину теоретического количества мочевины. Очевидно, что, хотя расщепление аргинина происходит в месте, весьма отдалённом от карбоксильной (COOH) группы (показано пунктиром), необходимым условием действия аргиназы является её соединение с карбоксильной группой аргинина. Поэтому замещение водорода в карбоксильной группе на метильный остаток или же связывание карбоксильной группы со второй молекулой аргинина оказывают резкое влияние на действие аргиназы. Примеры специфичности действия ферментов могут быть приведены при рассмотрении их стереохимической специфичности, т. е. действия ферментов на стереоизомеры.

В образовании соединения между ферментом и субстратом – т. н. фермент-субстратного комплекса – принимают участие лишь некоторые функциональные группы молекулы фермента, образующие его активный центр. Так, например, в молекуле гидролизирующего белки химотрипсина, состоящего из 246 аминокислотных остатков, активный центр образован одним из остатков серина и двумя остатками гистидина, расположенными в удалённых друг от друга участках полипептидной цепи. Сближение этих функциональных групп активного центра происходит благодаря свойственной молекуле химотрипсина специфической пространственной (третичной) структуре. Её нарушение в результате денатурации белка или каких-либо химических модификаций приводит к изменению или полной потере каталитической активности. В случае двухкомпонентных ферментов в образовании фермент-субстратного комплекса принимают участие не только функциональные группы апофермента, но и простетическая группа. Так, при расщеплении пировиноградной кислоты пируватдекарбоксилазой субстрат связывается с частью молекулы тиамин-пирофосфата следующим образом:

Ферменты и пищеварение

Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника. Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов.

Ферменты в медицине и сельском хозяйстве

Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса. Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты.

Применение ферментов

Ферментативные процессы являются основой многих производств: хлебопечения, виноделия, пивоварения, сыроделия, производства спирта, чая, уксуса. С начала 20 в. по предложению японского учёного Д.Такамине в спиртовой и др. отраслях промышленности началось применение ферментных препаратов, получаемых из плесневых грибов или бактерий. В ряде стран этот способ широко используется для осахаривания с помощью амилаз крахмалистого сырья с целью получения кристаллической глюкозы или его сбраживания на спирт. Концентрированные амилолитические препараты ферментов из плесневых грибов при добавке в тесто приводят к улучшению качества хлеба и ускорению технологического процесса. Препараты протеолитических ферментов, получаемых из микроорганизмов, употребляются в кожевенной промышленности для удаления волос и мягчения сырья, а в сыродельной промышленности – для замены дефицитного сычужного фермента (реннина). Препараты микробных пектолитических ферментов широко используют при производстве соков (выход плодового сока повышается на 10–20%). Всё большее применение очищенные ферментные препараты находят в медицине. В научных исследованиях и в клинической практике высокоочищенные ферментные препараты служат в качестве специфических средств биохимического анализа. Весьма перспективно применение т. н. иммобилизованных ферментов, которые связываются каким-либо носителем, образующим с данным ферментом нерастворимый комплекс. При подборе соответствующего носителя можно получить иммобилизованный фермент с высокой активностью, устойчивый по отношению к денатурирующим агентам. Колонка, заполненная иммобилизованным ферментом, может быть многократно использована для проведения соответствующей реакции. Иммобилизованные ферменты находят всё более широкое применение в аналитической практике и биохимической технологии.

Классификация и номенклатура ферментов

По рекомендации Международного биохимического союза ферменты разделяют на 6 классов:

1) оксидоредуктазы

2) трансферазы

3) гидролазы

4) лиазы

5) изомеразы

6) лигазы.

Рекомендована следующая нумерация Ф. Шифр (индекс) каждого Ф. содержит 4 числа, разделённых точками. Первая цифра указывает класс, вторая – подкласс, третья – подподкласс, четвёртая – порядковый номер в данном подподклассе.

Так фермент аргиназа, расщепляющий аргинин на орнитин и мочевину, имеет шифр 3.5.3.1, т. е. относится к классу гидролаз, подклассу ферментов, действующих на непептидные С–N-cвязи, и подподклассу ферментов, расщепляющих эти связи в линейных (не циклических) соединениях.

1)Класс оксидоредуктаз включает ферменты, катализирующие окислительно-восстановительные реакции, и разделяется на 14 подклассов в зависимости от природы той группы в молекуле субстрата, которая подвергается окислению (спиртовая, альдегидная, кетонная и т.д.). Подподклассы оксидоредуктаз индексируются в зависимости от типа участвующего в реакции акцептора водорода (электронов) – кофермента, цитохрома, молекулярного кислорода и т.д. Т. о., первые три цифры шифра определяют тип фермента. Так, например, 1.2.3 обозначают оксидоредуктазу, действующую на альдегид с молекулярным кислородом в качестве акцептора электронов.

2)Класс трансфераз, объединяющий ферменты, катализирующие реакции переноса групп, подразделяется на 8 подклассов в зависимости от природы переносимых групп, которыми могут быть одноуглеродные или гликозильные остатки, азотистые или содержащие серу группы и т.д. У трансфераз третья цифра характеризует тип переносимых групп (например, одноуглеродная группа может быть метилом, карбоксилом, формилом и т.д.).

3)К гидролазам принадлежат ферменты, катализирующие гидролитическое расщепление различных соединений; разделяются на 9 подклассов в зависимости от типа гидролизуемой связи – сложноэфирной, пептидной, гликозидной и т.д. Третья цифра у гидролаз уточняет тип гидролизуемой связи.

4)Лиазы –ферменты, отщепляющие от субстрата ту или иную группу (негидролитическими путями) с образованием двойной связи или, наоборот, присоединяющие группы к двойным связям. У лиаз 5 подклассов, вторая цифра шифра обозначает тип подвергающейся разрыву связи (углерод – углерод, углерод – кислород и т.д.), а третья – тип отщепляемой группы.

5)Изомеразы, катализирующие реакции изомеризации, разделяются на 5 подклассов в зависимости от типа катализируемой реакции; третья цифра шифра детализирует характер превращения субстрата.

6)Лигазами (или синтетазами) называются ферменты, которые катализируют соединение двух молекул, сопряжённое с расщеплением пирофосфатной связи в молекуле аденозинтрифосфорной кислоты (АТФ) или аналогичного трифосфата. Первая цифра шифра лигаз обозначает тип вновь образуемой связи (углерод – азот, углерод – кислород и т.д.), а вторая – природу образующегося соединения.

Классификация и номенклатура ферментов, кроме шифра, включает также систематические и тривиальные (рабочие) названия. Так, например, систематическое название карбоксилаза 2-оксокислот соответствует уже упоминавшемуся тривиальному название пируватдекарбоксилаза, а систематическое название L-apгинин – амидиногидролаза – рабочему название аргиназа.

Локализация ферментов в клетке

Одним из принципиальных отличий ферментов от катализаторов небиологического происхождения является кооперативный характер их действия. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно.

С современной точки зрения клетка представляется высокоорганизованной системой, в отдельных частях которой осуществляются строго определенные биохимические процессы. В соответствии с приуроченностью их к определенным субклеточным частицам или отсекам (компартментам) клетки в них локализованы те или иные индивидуальные ферменты, мультиэнзимные комплексы, полифункциональные ферменты или сложнейшие метаболоны.

Разнообразные гидролазы и лиазы сосредоточены преимущественно в лизосомах. Внутри этих сравнительно небольших (несколько нанометров в диаметре) пузырьков, ограниченных мембраной от гиалоплазмы клетки, протекают процессы деструкции различных органических соединений до тех простейших структурных единиц, из которых они построены. Сложные ансамбли окислительно-восстановительных ферментов, такие, например, как цитохромная система, находятся в митохондриях. В этих же субклеточных частицах локализован набор ферментов цикла дикарбоновых и трикарбоновых кислот. Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимопереключение дихотомического и апотомического путей распада углеводов. В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи икатализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

Таким образом, системы ферментов, сосредоточенные в тех или иных структурах, участвуют в осуществлении отдельных циклов реакций. Будучи тонко координированы друг с другом, эти отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом.

Методы выделения и очистки ферментов

Выделяют ферменты так же, как и другие белки, хотя есть приемы, применяемые преимущественно для ферментов. Из них можно отметить экстракцию глицерином, в котором сохраняются нативные свойства ферментов, а также метод ацетоновых порошков, состоящий в осаждении и быстром обезвоживании при температуре не выше -10°С тканей или вытяжек из них, содержащих ферменты. К их числу относится также получение ферментов путем адсорбции с последующей элюцией (снятием) с адсорбента. Этот метод был введен в химию ферментов А. Я. Данилевским и дал мощный толчок развитию ферментологии. Сейчас адсорбционный метод выделения и очистки ферментов разработан детально. Наряду с ним широко применяют метод ионообменной хроматографии, метод молекулярных сит, электрофорез и особенно изоэлектрофокусирование. Одна из модификаций адсорбционного метода - афинная хроматография, где адсорбентом служит вещество, с которым фермент взаимодействует избирательно. В результате лишь один этот фермент задерживается на колонке, а все сопутствующие ему выходят с током проявителя. Изменяя характер проявителя, исследуемый фермент элюирует с колонки. Этим методом достигают очистки фермента в несколько тысяч раз, применяя всего лишь одноэтажную (аффинная сорбция - элюция) схему выделения.

Для успешного выделения ферментов из клеточного содержимого необходимо очень тонкое измельчение исходного материала, вплоть до разрушения субклеточных структур: лизосом, митохондрий, ядер и др., которые несут в своем составе многие индивидуальные ферменты. Особое внимание при выделении ферментов уделяют проведению всех операций в условиях, исключающих денатурацию белка, так как она всегда связана с потерей ферментативной активности. Этому способствует проведение операций в присутствии защитных добавок, в частности HS-содержащих соединений (цистеина, глутатиона, меркаптоэтанола, цистеамина, дитиотреитола и др.).

Очень важно поддерживать на всех этапах выделения ферментов низкую температуру, так как некоторые из них даже при -80°С теряют активность.

Ферментные препараты

Ферментные препараты, лекарственные средства, содержащие ферменты, оказывают направленное влияние на обмен веществ. Ф. п. получают из продуктов животного происхождения, растений и микроорганизмов. Желудочный сок, пепсин, панкреатин и др. Ф. п. и ферменты применяют при желудочно-кишечных заболеваниях с нарушением функций желёз органов пищеварения. Широкое применение в медицинской практике нашли Ф. п. протеолитического, получаемые из поджелудочной железы крупного рогатого скота (например, химотрипсин). Они расщепляют пептидные связи в белках и пептидах. Трипсин при местном воздействии разрушает некротизированные ткани и фибринозные образования, разжижает вязкие секреты, экссудат, сгустки крови, при внутримышечном введении оказывает противовоспалительное действие. Применяют трипсин в виде ингаляций или внутримышечно для облегчения удаления секрета и экссудата при бронхитах, бронхоэктатической болезни; при лечении тромбофлебита, остеомиелита, гайморита, иридоциклита и др. заболеваний; местно – при лечении ожогов, пролежней, гнойных ран. Дезоксирибонуклеаза уменьшает вязкость гноя, задерживает развитие вирусов герпеса, аденовирусов; применяют при герпетических и аденовирусных заболеваниях глаз, абсцессах лёгких, поражениях верхних дыхательных путей. Препарат лидаза, содержащий фермент гиалуронидазу, вызывает увеличение проницаемости тканей и облегчает движение жидкостей в межтканевых пространствах; применяют при контрактурах суставов, рубцах после ожогов и операций, гематомах и др. Для лечения тромбоэмболий, тромбофлебитов, инфаркта миокарда применяют фибринолизин, растворяющий свежие тромбы. Пенициллиназа, получаемая из культуры Bacillus cereus, инактивирует препараты пенициллина, в связи с чем применяется при аллергических реакциях, вызванных этими препаратами.

В медицинской практике применяют также препараты с антиферментной активностью: антихолинэстеразные средства (угнетают холинэстеразу), некоторые антидепрессивные средства (угнетают моноаминоксидазу); в качестве мочегонных – ингибиторы карбоангидразы (например, диакарб);при острых панкреатитах – ингибиторы протеолитических ферментов (например, трасилол).

Влияние ферментов на человеческий организм

Ферменты используют различные вещества для создания нашего организма. Но они могут не только созидать, но и разрушать уже построенное. Ферменты — жизненно важная рабочая сила нашего организма. Его жизнедеятельность, включая зачатие, формирование и поддержание здоровья, зависят от работы ферментов.

Исходные белки, углеводы и жиры мы получаем из пищи. Но для их переработки и усвоения необходимы пищеварительные ферменты, которые расщепляют их до простых соединений и способствуют усвоению необходимых витаминов, микроэлементов и других питательных или лекарственных веществ.

Для поддержания здоровья организму человека необходимы ежедневно около 90 различных питательных веществ, Эти питательные ве­щества включают 60 микроэлементов, 16 витаминов, 12 аминокислот и три незаменимые жирные кислоты. Но это далеко неполный перечень необходимых соединений, Дефицит витаминов и микроэлементов приводит к разрушительным последствиям для всего организма. Организм также недополучит многие жизненно важные соединения, если пища не будет правильно переварена и усвоена.

В мировой истории зафиксирован ряд документов, в которых рассказано о людях, доживших до 120 лет и более. Сегодня в лабораторных условиях ученые могут поддерживать клетки живыми и здоровыми бесконечно. Все зависит от поступления питательных веществ и работы ферментов. Возможно, человек способен жить достаточно долго, но по неизвестной пока причине продолжительность жизни людей относительно мала. Может ли быть такой причиной нарушение работы ферментов и соответственно усвоения необходимых веществ?

Дефицит ферментов в организме

У многих людей встречается недостаточность пищеварительных ферментов, которая вызывает непереносимость некоторых пищевых продуктов и пищевую несовместимость. Это может быть как врожденное, так и приобретенное явление. Врожденная недостаточность ферментов передается по наследству и является генетической особенностью организма. Приобретенная возникает в результате воздействия неблагоприятных факторов окружающей среды или перенесенных заболеваний.Согласно статистике, дефицитом тех или иных ферментов страдают около 20% людей.

Недостаток ферментов вызывает появление специфических заболеваний. Например, генетически обусловленная недостаточность фермента лактазы приводит к непереносимости молока из-за содержания в нем молочного сахара, лактозы. Обратите внимание - фермент лактаза предназначен для перерабатывания лактозы. Названия большинства ферментов так и устроены - берется основа названия вещества, на которое он действует, и прибавляется -аза.

Отсутствие фермента, действующего на аминокислоту фенилаланин, приводит к накоплению этого вещества в крови и появлению тяжелого заболевания - фенилкетонурия, по симптомам напоминающего слабоумие. Современный заменитель сахара аспартам содержит данную аминокислоту и поэтому не может использоваться такими больными, об этом всегда предупреждают этикетки напитков и жевательной резинки с аспартамом.

В результате недостаточности определенных пищеварительных ферментов некоторая пища в кишечнике не расщепляется до уровня средних и мелких молекул. Большие частички пищи, находясь в просвете тонкого кишечника, подвергаются гниению и брожению за счет микроорганизмов. Это создает благоприятные условия для развития воспаления, а затем и интоксикации. Продукты гниения и брожения оказывают повреждающее действие на клетки кишечника, а всасываясь в кровь, вызывают общую интоксикацию организма и ослабляют иммунную систему. Это проявляется в повышенной утомляемости, слабости, нарушении обмена веществ, раздражительности, головных болях, бледности, бессоннице.

Симптомы ферментной недостаточности

Вот некоторые симптомы, которые могут наблюдаться при недостаточности пищеварительных ферментов и непереносимости некоторых продуктов:

* постоянная прибавка в весе;

* хроническая усталость;

* раздражительность;

* сонливость после еды;

* дефицит веса;

* головные боли (не связанные с простудой);

* мышечные боли (не связанные с простудой или физическими нагрузками);

* боли в суставах (не связанные с простудой или физическими нагрузками);

* темные круги под глазами;

* мешки под глазами;

* угревая сыпь;

* кожная сыпь;

* запоры;

* поносы;

* чувство дискомфорта в животе;

* изжога, отрыжка;

* заложенность носа (не связанная с простудой);

* отеки.

Дефицит ферментов может сочетаться с такими заболеваниями как болезнь Крона, язвенный колит, экзема, астма, хроническая диарея (понос) и другими.


Дата публикования: 2014-11-18; Прочитано: 8412 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...