Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Преимущества водорода как топлива по сравнению с бензином



Неисчерпаемость. В Мировом океане водорода содержится 1,2×1013 т., дейтерия — 2×1013 т. Суммарная масса водорода составляет 1% общей массы Земли, а число атомов — 16%. Особенно важен здесь тот фактор, что при сгорании водород превращается в воду и полностью возвращается в круговорот природы.

Весовая теплотворная способность водорода (28630 ккал/кг) в 2,8 раза выше по сравнению с бензином.

Энергия воспламенения в 15 раз меньше, чем для углеводородного топлива.

Максимальная скорость распространения фронта пламени в 8 раз больше по сравнению с углеводородами.

Излучение пламени в 10 раз меньше по сравнению с пламенем углеводородов.

Экологичность. При использовании водорода как топлива исключается возможность усиления парникового эффекта, не выделяются вредные вещества (автомобильный двигатель выбрасывает 45 токсичных веществ, в том числе и канцерогены), нет опасности образования застойных зон водорода: он легко улетучивается.

Отрицательные качества водорода: это низкие плотность и объемная теплотворная способность, более широкие пределы взрываемости и более высокая температура воспламенения по сравнению с углеводородами. Применение концепции энергоаккумулирующих веществ позволит снизить негативное влияние этих недостатков водорода как топлива, которые заметно перекрываются его достоинствами.

Водород вообще можно считать универсальным топливом, поскольку он обладает абсолютной экологической чистотой, может заменить бензин, дизельное топливо и мазут в тепловых двигателях (автомобильных, тракторных, комбайновых, локомотивных, судовых, вспомогательных и др.), пригоден для всех видов тепловых двигателей: поршневых с воспламенением от искры и сжатия, поршнетурбинных, во всех типах турбоустановок, двигателя Стирлинга, двигателей прямой реакции, для бытовых целей.

Принцип работы топливного элемента:

Водородный топливный элемент представляет собой устройство, преобразующее химическую энергию реакции соединения водорода с кислородом в электричество.

Водород поступает на анод топливного элемента, где атомы разлагаются на электроны и протоны. Для ускорения процесса используют катализатор.

Электроны поступают в электрическую цепь, создавая ток.

Протоны проходят через полимерную электролитическую мембрану.

Кислород (из окружающего воздуха) поступает на катод и соединяется с протонами и электронами водорода, образуя воду.

Побочными продуктами реакции являются тепло и водяной пар.

Заключение

По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на невозобновляемых ресурсах. Но струк­тура ее изменится. Должно сократиться использование нефти. Су­щественно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канс­ко-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за десятки-сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запа­сов топлива может хватить на века.

Учитывая результаты существующих прогнозов по истощению к середине – концу следующего столе­тия запасов нефти, природного газа и других традиционных энергоресурсов, а также сокращение потребления угля (которо­го, по расчетам, должно хватить на 300 лет) из-за вредных выбро­сов в атмосферу, а также употребления ядерного топлива, которого при условии интенсивного развития реакторов-раз­множителей хватит не менее чем на 1000 лет можно считать, что на данном этапе развития науки и техники тепловые, атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии. Уже началось удорожание нефти, поэтому тепловые электростанции на этом топливе будут вытеснены станциями на угле.

Некоторые ученые и экологи в конце 1990-х гг. говорили о скором запрещении государствами Западной Европы атомных электростанции. Но исходя из современных анализов сырьевого рынка и потребностей общества в электроэнергии, эти утверждения выглядят неуместными.

Неоспорима роль энергии в поддержании и дальней­шем развитии цивилизации. В современном обществе трудно найти хотя бы одну область человеческой дея­тельности, которая не требовала бы – прямо или кос­венно – больше энергии, чем ее могут дать мускулы человека.

Потребление энергии – важный показатель жизнен­ного уровня. В те времена, когда человек добывал пи­щу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овла­дения огнем эта величина возросла до 16 МДж: в при­митивном сельскохозяйственном обществе она составля­ла 50 МДж, а в более развитом – 100 МДж.

За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные. И не потому, что старый источник был исчерпан.

Солнце светило и обогревало человека всегда, и тем не менее однажды люди приручили огонь, начали жечь древесину. Затем древесина уступила место каменному углю. Запасы древесины казались безграничными, но паровые машины требовали более калорийного "корма".

Но и это был лишь этап. Уголь вскоре уступает свое лидерство на энергетическом рынке нефти.

И вот новый виток в наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонной нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже.

Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники.

Запасы урана, если, скажем, сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь.

А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю. Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики.

В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в конце 20 века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы.

Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении.

Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со Всем, и Все тянется к энергетике, зависит от нее.

Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Литература

Под. ред. Белосельского В.И. Топливоиспользование и тепломассобменные процессы в парогенераторах. - М.: Машиностроение, 1982.

Соколов Е.Я. Теплофикация и тепловые сети. М.: Энергоатомиздат, 1982.

А.В.Троицкий. Природоохранные проблемы в гидроэнергетике. М. Энергия. - 2003, № 5. С. 29-34.

Гидроэнергетика и комплексное использование водных ресурсов СССР. - М.: Энергоатомиздат, 1982г.

Стефан Е.П. Основы автоматического регулирования теплоэнерге-тических объектов. - М.: Наука, 1973.

Стырикович М.А., Катковская К.Я., Серов Е.П. Парогенераторы электростанций. – М.-Л.: Энергия, 1966.

Вукалович М.П. Теплофизические свойства воды и водяного пара. – М: Машиностроение, 1967.

Газомазутные паровые котлы типа Е(ДЕ). Техническое описание, инструкция по монтажу, обслуживанию и ремонту 00.0303.002 ИЭ. – Бийск: Бийскэнергомаш, 1995.

Зыков А.К. Паровые и водогрейные котлы. - М.: Машиностроение, 1987.

Роддатис К.Ф., Справочник по котельным установкам малой мощности. – М.: Машиностроение, 1984.

Марочкин В.К. Паровые, водогрейные котлы низкого давления. Справочник. - М.: Энергетика, 1991.

Тепловые и атомные электрические станции / Под ред. В.А. Григорьева, В.М. Зорина. М.: Энергоатомиздат, 1988.

Стерман Л.С., Лавыгин Л.М., Тишин С.Г. Тепловые и атомные электрические станции: Учебник для вузов. – 3-е изд.,перераб. – МЭИ, 2004. – 424 с.





Дата публикования: 2014-11-02; Прочитано: 947 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...