Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Кинетика химических реакций



Цель работы: изучение скорости химической реакции и ее зависимости от различных факторов: природы реагирующих веществ, концентрации, темпе­ратуры.

Оборудование и реактивы: химический стакан, термометр, штатив с пробирками, электроплитка, лучина, дистиллированная вода, 0,1М раствор НС1, 1,0 н, раствор H2SO4, 0,05 н раствор Na2S2O3, мел.

ТЕОРЕТИЧЕСКИЕ ПОЯСНЕНИЯ

Кинетика – наука о скорости химических реакций. Скоростью химической реакции называют изменение концентра­ции реагирующего вещества в единицу времени. Скорость реакции зависит от ряда факторов: природы реагирующих веществ, концентрации реагирующих веществ, темпе­ратуры, наличия катализатора.

1) Зависимость скорости реакции от концентрации выражается законом действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению кон­центраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам. Например, для реакции

Н2(г) + I2 (г) → 2HI(г)

закон действующих масс может быть записан где — скорость химической реакции; константа скорости; и концентрации реагирующих веществ.

Реакции в гетерогенной системе осуществляются на поверхности раздела между фазами. Поэтому скорость гетерогенных реакций при постоянной температу­ре зависит не только от концентрации веществ, но и от площади поверхности раздела. Так, для реакции:

С(к) + О2(г) → СО2(г)

закон действующих масс имеет вид где - константа скорости; - концентрация кислорода; S - площадь поверхности раздела между фазами.

2) Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа:

где v1 и v2 скорости реакции при Т2 и Т1, - температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 оС.

Более точно влияние температуры на скорость химической реакции можно определить с помощью уравнения Аррениуса:

υ ~ k = A·e-Ea/R·T,

где υ – скорость химической реакции; k – константа скорости (скорость при концентрациях реагентов, равных 1); A – предэкспоненциальный множитель; e – экспонента; R – газовая постоянная (8,31 Дж/моль·К); T – температура, К; Eа – энергия активации, кДж/моль.

Значение предэкспоненциального множителя (A) определяется природой реагентов, вступающих в реакцию.

A = z·P,

где z – коэффициент, равный числу соударений молекул в одну секунду в данной реакции; P- стерический фактор, определяющий вероятность взаимодействия данных молекул.

Величина энергии активации (Eа) в уравнении Аррениуса имеет точное значение для каждой химической реакции и определяется природой реагирующих веществ. Энергия активации – избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества. Молекулы, обладающие такой энергией, называются активными молекулами.

Для того, чтобы произошла реакция, необходимо сначала преодолеть отталкивание электронных оболочек молекул, разорвать или ослабить связи между атомами исходных веществ. На это надо затратить определенную энергию. Если энергия сталкивающихся молекул достаточна, то столкновение может привести к перестройке атомов и к образованию молекулы нового вещества. При разрыве или ослаблении связей между атомами в молекулах исходные вещества переходят в неустойчивое промежуточное состояние, характеризующееся большим запасом энергии. Это состояние называется активированным комплексом или переходным состоянием. Именно для его образования и необходима энергия активации (Eа). Неустойчивый активированный комплекс существует короткое время. Он распадается с образованием продуктов реакции или исходных веществ, при этом энергия выделяется. Переходное состояние возникает в ходе как прямой, так и обратной реакции. Энергетически оно отличается от исходных веществ на величину энергии активации прямой реакции, а от конечных – на энергию активации обратной реакции.

С ростом температуры наблюдается увеличение энергии системы, и соответственно увеличивается доля молекул, энергия которых равна или превышает энергию активации данной химической реакции, что приводит к росту её скорости.

3) Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи веществ (катализаторов), увеличивающих скорость реакции, но не расходующихся в результате ее протекания.

Механизм действия катализатора сводится к уменьшению величины энергии активации реакции, т.е. к уменьшению разности между средней энергией активных молекул (активного комплекса) и средней энергией молекул исходных веществ. Скорость химичес­кой реакции при этом увеличивается.

МЕТОДИКА ПРОВЕДЕНИЯ ОПЫТОВ

Опыт 1 Зависимость скорости реакции от концентрации реагирующих веществ.

Зависимость скорости реакции от концентрации реагирующих веществ изучают на примере взаимодействия тиосульфата натрия с серной кислотой:

2S2О3 + Н2S04 = S02 + Nа2S04 + H2O + S

Признаком реакции является помутнение раствора вследствие выделения серы.

Заполните три бюретки: первую – раствором Н2S04, вторую – 0,05 н раствором 2S2О3, третью — водой. Приведите бюретки в рабочее положение.

Налейте в три пробирки из бюретки по 1 мл Н2S04. В другие три пробирки из бюреток налейте: в первую — 1 мл раствора 2S2О3 и 2 мл воды; во вторую – 2 мл раствора 2S2О3 и 1 мл воды; в третью – 3 мл раствора 2S2О3 и 0 мл воды.

Заметив время, в первую пробирку прилейте из пробирки 1 мл отмеренного раствора серной кислоты и быстро перемешайте полу­ченную смесь. Отметьте время начала помутнения раствора. Проделайте то же самое с двумя оставшимися пробирками.

Рассчитайте vпракт для второго и третьего случаев, учитывая, что скорость реакции и время протекания реакции до начала по­мутнения раствора обратно пропорциональны. Следовательно:

где v1 – скорость реакции в первом случае (v1 = 1); v2 скорость реакции во втором (третьем) случае; τ1 – время протекания реак­ции до начала помутнения раствора в первом случае, с; τ2 – время протекания реакции до начала помутнения раствора во втором случае, с.

Резуль­таты опыта внесите в табл. 1.

Таблица 1.

п/п   Объем, мл Относительная концентрация   Температура опыта, °С   Время начала помутнения, с   Относительная скорость реакции    
H2S04 Н2О Na2S2O3 vтеор     vпракт  
          комнатная          
          комнатная            
          комнатная            

Опыт 2 Зависимость скорости реакции от температуры.

Зависимость скорости реакции от температуры изучают на при­мере реакции

2S2О3 + Н2S04 = Nа24 + S02 + H2O + S

По правилу Вант - Гоффа (при γ = 1,8) получаем, что при повышении температуры на 10° скорость реак­ции увеличится в 1,8 раза, на 20° - в 3,24 раза, на 30° - в 5,832 раза и т.д.

Приведите бюретки с растворами 2S2О3, Н2S04 и водой в рабочее положение.

В две пробирки из бюретки прилейте по 1 мл Н2S04. В две другие пробирки из бюреток прилейте по 1 мл раствора 2S2О3 и по 2 мл воды.

Одну пару пробирок (одна пробирка с Н2S04, другая с 1 мл Nа2S2О3 и 2 мл воды) поместите в стакан с горячей водой с температурой на 10° выше комнатной. Через 5-7 мин, когда растворы нагреются до нужной температуры, смешайте их и определите время помутнения раствора, как в опыте 1.

Другую пару пробирок поместите в термостат с температурой на 20о выше комнатной. Через 5-7 мин смешайте растворы и опре­делите время начала помутнения.

Рассчитайте vпракт для второго и третьего случаев (методика расчета дана выше). На миллиметровой бумаге постройте кривую зависимости vтеор от температуры. На этом же графике отметьте значения vпракт.

Рассчитайте значение температурного коэффициента γпракт исходя из опытных данных.

Результаты опыта запишите в табл. 2. (эксперименталь­ные данные для комнатной температуры возьмите из опыта 1, № п/п 1).

Таблица 2.

п/п Объем, мл Общий объем, мл Температура опыта, 0С Время начала помутнения, с Относительная скорость реакции
H2S04 Н2О Na2S2O3 vтеор vпракт
          комнатная      
          комнатная +10   1,8  
          комнатная + 20   3,24  
                   

Опыт 3 Влияние поверхности раздела реагирующих веществ на скорость реакции в гетерогенной системе (полумикрометод)

а) Взаимодействие карбоната кальция с соляной кислотой. Приготовьте два небольших приблизительно одинаковых кусочка мела. Один из них разотрите пестиком на листе бумаги и пересыпьте в коническую пробирку, второй поместите в другую пробирку. В обе пробирки одновременно добавьте по 15-20 капель концентрированной соляной кислоты. Напишите уравнение реакции. Отметьте наблюдаемые явления и объясните их.

Опыт 4 Зависимость скорости реакции от природы реагирующих веществ.

В две пробирки поместите примерно одинаковые промытые водой кусочки цинка. В первую пробирку прилейте 0,1 М раствора HCI, в другую 0,1 М раствора уксусной кислоты. Отметьте, в какой из пробирок газ выделяется более интенсивно. Чем объяснить различную скорость выделения водорода в первом и во втором случаях? Напишите уравнения реакций взаимодействия цинка с уксусной и соляной кислотами.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1 Вычисление скорости реакции по концентрациям реагирующих веществ.

Реакция между веществами А и В протекает по уравнению 2А + В = С; концентрация вещества А равна 6 моль/л, а вещества В - 5 моль/л. Константа скорости реакции равна 0,5 л2∙моль -2∙с-1. Вычислите скорость химической реакции в начальный момент и в тот момент, когда в реакционной смеси останется 45 % вещества В.

Решение

Согласно закону действующих масс скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных стехиометрическим коэффициентам. Следовательно, для
уравнения реакции в нашем примере

Скорость химической реакции в начальный момент равна

v = 0,5∙ 6 2 ∙5 = 90,0 моль ∙с -1∙ л -1

По истечении некоторого времени в реакционной смеси останется 45 % вещества В. т. е. концентрация вещества В станет равной 5,0∙0,45= 2,25 моль/л. Значит, концентрация вещества В уменьшилась на 5,0 - 2,25 = 2,75 моль/л. Так как вещества А и В взаимодействуют между собой в соотношении 2:1, то концентрация вещества А уменьшилась на 5,5 моль/л (2,75∙ 2) и стала равной 0,5 моль/л (6,0 - 5,5). Следовательно, v2 = 0,5∙(0.5)2 ∙ 2,25 = 0,28 моль∙с -1∙л -1.





Дата публикования: 2014-11-03; Прочитано: 745 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...