Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Детерминизм. Виды детерминизма. 3 страница



Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В. Гейзенбергом, и принципе дополнительности Н. Бора.

В своей книге «Физика атомного ядра» В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра — координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и, в принципе, не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование.

Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принцип дополнительности, которому Н. Бор дал следующую формулировку «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего».

С теоретической точки зрения, микрообъекты, для которых существенным является квант действия М. Планка, не могут, рассматриваться так же, как объекты макромира, ведь для них планковская константа h из-за ее малой величины не имеет, значения. В микромире корпускулярная и волновая картин сами по себе не являются достаточными, как в мире больших тел. Обе «картины» законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, т. е. быть комплементарными. Только при учете, обоих аспектов можно получить общую картину микромира.

Согласно современным представлениям, структура элементарных частиц описывается посредством непрерывно возникающих и снова распадающихся «виртуальных» частиц. Например, мезон строится из виртуального нуклона и антинуклона, которые в процессе аннигиляции (лат. annihilatio, букв, уничтожение) непрерывно исчезают, а затем образуются снова.

Формальное привлечение виртуальных частиц означает, что внутреннюю структуру элементарных частиц невозможно описать через другие частицы.

Удовлетворительной теории происхождения и структуры элементарных частиц пока нет. Многие ученые считают, что такую теорию можно создать только при учете космологических обстоятельств. Большое значение имеет исследование рождения элементарных частиц из вакуума в сильных гравитационных и электромагнитных полях, поскольку здесь устанавливается связь микро- и мегамиров. Фундаментальные взаимодействия во Вселенной, в мегамире определяют структуру элементарных частиц и их превращения. Очевидно, потребуется выработка новых понятий для адекватного описания структуры материального мира.

43. Принцип неопределенности. Понятие физического вакуума.
«Принцип неопределенности» - один из базовых принципов квантовой механики. Согласно ему некоторые пары физических величин, например, координаты и скорость иливремя и энергия, не могут одновременно иметь полностью определенные значения. Так чем точнее известна скорость частицы, тем больше «размазано» ее местоположение, или чем меньше время жизни возбужденного состояния атома, тем больше его ширина (разброс энергий). Считается, что неопределенность выражается в невозможности точного измерения значений пар этих величин.
В полевой физике тоже возникают похожие соотношения, только они приобретают диаметрально противоположный смысл и связаны снеустойчивостью квантовых процессов. Так в классической физике большинство функций y = f(x), которые описывают движение, является непрерывными: – сколько угодно малому изменению аргумента ∆x соответствует сколь угодно малое изменение значения функции ∆y:

Например, за малый промежуток времени ∆t энергия классической системы изменяется на малую величину ∆E.
В квантовых условиях все происходит наоборот. Квантовые системы обычно имеют дискретные характеристики, а значит, сколь угодно малое изменение одного из параметров уже не может привести к сколь угодно малому изменению другого параметра. К этому и приводит полевая физика. Так в отличие от классического случая сколь угодно малое изменение характерного времени системы (периода или собственной частоты) оказывается возможным только при сколько угодно большом изменении энергии системы. В результате переход с одной собственной частоты на другую происходит скачком, при этом также скачком изменяется и величина энергии системы. Причем чем меньше оказывается при таком скачкообразном переходе изменение собственного времени системы ∆t, тем большее изменение величины энергии ∆E ему соответствует и наоборот.
Другими словами, в квантовых условиях между такими парами величин, как характерное время и энергия, или положение и импульс, выполняется обратная связь малых приращений, нежели для дифференцируемых функций. Для этих зависимостей сколь угодно малое изменение аргумента соответствует сколь угодно большому изменению значений функции и наоборот. То есть малые приращения оказываются не пропорциональными друг другу, а обратно пропорциональными:

Эту связь можно выразить и по-другому, записав, что произведение двух приращений должно иметь порядок некой константы h (есть речь идет не о безразмерных, а о реальных физических величинах)

В этом и состоит смысл принципа неопределенности в полевой физике. По сути, он не связан с соотношением погрешности измерений, а выражает то обстоятельство, что в случае дискретных функций связь приращений физических величин иная, нежели у дифференцируемых функций.
«Физический вакуум» - одно из понятий современной физики, в частности квантовойтеории поля. Слово вакуум означает пустота, и в классической физике может применяться, например, к очень разряженному газу – некой области, в которой нет или почти нет частиц. Аналогично в квантовой теории поля понятие физический вакуум применяется к низшему энергетическому состоянию полей при отсутствии реальных частиц. Однако характер квантовых законов таков, что даже в этом состоянии могут существовать «нулевые» колебания поля, а также происходить «виртуальные»процессы.
С философской точки зрения возникновение понятия физического вакуума в современной физике имеет интересное значение. По сути, это очередное возвращение, пусть и на новом уровне, к идее наличия некой нематериальной подосновы, отвечающей за наблюдаемые процессы в материальном мире. В прошлые столетия роль такой подосновы или посредника физическихвзаимодействий отводилась эфиру, от которого впоследствии отказались. Однако современная физика вновь пришла к некому современному «эфиру» под названием «физический вакуум».
Полевая физика не использует ни понятие физический вакуум, ни понятие эфир. В ней возникли представления о полевой среде – своеобразном расширении понятия физического поля. Отчасти полевая среда наследует идеи эфира, как посредника физических взаимодействий, однако устраняет все связанные с ним противоречия. С другой стороны, поведение полевой среды отчасти напоминает физический вакуум. В ней могут существовать два типа возмущений. Первый из них обусловлен движением частиц и приводит в основном к классическому поведению. Второй связан с собственными процессами и возмущениями в полевой среде, что приводит, как правило, к квантовому поведению. В какой-то степени это напоминает нулевые колебания физического вакуума, на которые уже накладываются движения частиц.
Так или иначе, полевая среда – самостоятельное понятие. При этом многие идеи, присутствующие в концепции физического вакуума на полумистическом или излишне математизированном уровне, в концепции полевой средыполучают наглядную и очевидную интерпретацию «на пальцах».

44. Принцип соответствия. Соотношение между классической механикой
и теорией относительности, классической и квантовой механиками.

В мире квантовой механики, где всё определяют принцип неопределенности Гейзенберга и уравнение Шрёдингера, картина происходящего кардинально отличается от привычного нам мира классической механики, где действуют законы движения Ньютона. Однако же наш макроскопический мир соткан из микроскопических атомов, и законы макро- и микромира не могут не быть увязаны между собой. Впервые принцип соответствия законов микро- и макромира был озвучен датским физиком-теоретиком Нильсом Бором, и за иллюстрацией для лучшего понимания этого принципа лучше всего обратиться к упрощенной модели атома, которую также впервые представил миру этот же ученый (см.Атом Бора).
В атоме Бора электроны могут находиться только на «разрешенных» орбитах. Орбиты выстраиваются по главным квантовым числам. Ближайшая к ядру орбита имеет главное квантовое число, равное 1, следующая — 2 и т. д. Чем выше квантовое число электронной орбиты, тем дальше она удалена от ядра. По контрасту — в классическом ядре, предсказываемом ньютоновской механикой, электроны могут обращаться вокруг ядра по произвольным орбитам, находящимся от ядра на любом удалении (это, собственно, и могло бы происходить, не принимай мы во внимание квантовые эффекты).
Теперь, хотя физический радиус орбит и увеличивается неуклонно по мере возрастания главного квантового числа, кинетическая энергия электронов на этих орбитах увеличивается отнюдь не пропорционально расширению орбит, а снижающимися темпами, причем имеется верхний предел энергии удержания электронов на орбите вокруг ядра, который принято называть энергией срыва или энергией ионизации. Разогнавшись до такой энергии, электрон, теоретически, оказывается на орбите бесконечного радиуса, то есть, иными словами, превращается в свободный электрон и высвобождается из ионизированного атома. Между этим крайним пределом энергии высвобождения электрона и другим крайним пределом энергии нахождения электрона на первой к ядру орбите имеется счетный (но бесконечный) ряд допустимых дискретных энергетических состояний, в которых может находиться удерживаемый ядром электрон, причем, согласно законам квантовой механики, на достаточно удаленных от ядра расстояниях допустимые орбиты электронов начинают накладываться одна на другую. Происходит это в силу того, что допустимая энергия электрона на определенной орбите (и радиус этой орбиты, как следствие) определяется не точным квантовым числом, а, в соответствии с принципом неопределенности Гейзенберга, размыто — то есть, мы имеем лишь распределение вероятностей нахождения электрона на одной из соседних орбит. Здесь и начинается «стирание различий» между квантовомеханической моделью атома, где электрон может находиться лишь в фиксированных энергетических состояниях, поглощать и испускать энергию фиксированными порциями (квантами) и, соответственно, обитать на строго определенных орбитах, и классической моделью атома, где электрон обладает произвольной энергией и движется по произвольным орбитам. Иными словами, на больших удалениях от ядра атом начинает представлять собой классическую систему, подчиняющуюся законам механики Ньютона. Это, пожалуй, самый иллюстративный пример принципа соответствия в действии.
Принцип соответствия вступает в силу на нечеткой границе между квантовой и классической механикой и еще раз демонстрирует нам, что в природе нет явных границ между явлениями, как нет и четкого разграничения между теоретическими описаниями природных явлений. И еще он демонстрирует нам то, о чем уже говорилось во Введенииотносительно тенденций развития теоретической науки. Квантовая механика, например, отнюдь не отменяет и не подменяет собой классическую механику Ньютона, а лишь представляет собой предельный случай при переходе явлений в масштабы микромира. Вообще, естественнонаучные теории вырастают одна из другой по мере расширения наших ранее накопленных знаний подобно новым свежим побегам на древе познания окружающего мира.

45)Строение солнечной системы

В центре звезды находится черная дыра, то есть скопление выгоревшей материи, полностью остановившиеся фрагменты вещества. Эфирные потоки не способны проникать сквозь ч д. На ее поверхности существует максимальная разница эфирного давления, которая разрушает любые орбитальные микро энергосистемы. Громадное количество выделяющейся лучевой энергии на поверхности чд пытается отбросить окружающее чд вещество. Но разница эфирного давления прижимает его внутрь звезды, к поверхности чд. В таком противоходе более тяжелые элементы располагаются ближе к центру, а легкие выталкиваются на поверхность. Существует много вариантов звезд, разная масса чд и различный состав оболочки в сочетании с разным временем существования создают широчайший спектр разновидностей. Когда в недрах звезды выгорают все тяжелые элементы, которые сдерживали лучевой разброс, то легкие элементы отбрасываются дальше от центра. Звезда увеличивается, но количество вещества касающегося поверхности чд уменьшается, энергии выделяется меньше. Со временем чд сожрет и эту разряженную оболочку, при отсутствии энергосодержащей материи на поверхности чд всякое излучение прекращается. Планета отличается от звезды тем, что в оболочке чд слишком много тяжелых элементов, а сама чд еще мала и потому поверхность оболочки остывшая. Но со временем чд увеличивается, тяж элементы выгорают и холодная оболочка раскаляется. Вспышки сверх новых звезд происходят в результате столкновения двух черных дыр. Поскольку существует много разновидностей оболочек и размеров чд, то и вспышки могут быть различны. По внешнему виду и спектру излучений вспышки можно установить характеристики виновников катаклизма. Если столкнулись две чд одинакового размера, то внешний вид взрыва будет копировать, как бы, в увеличенном виде прикосновение двух шаров, где точка соприкосновения будет самой яркой зоной, и далее по обоим шарам яркость будет убывать. Видна будет ось их полета до столкновения, линия от самой темной точки на одном шаре через самую яркую точку соприкосновения к темной точке на другом шаре, и яркая плоскость излучения из точки прикосновения перпендикулярная оси столкновения. Со временем в плоскости перпендикулярной оси столкновения может возникнуть яркое кольцо первичного выброса самой горячей плазмы. Разность размеров столкнувшихся чд будет отображена с фотографической точностью во внешнем виде вспышки. Существует множество вариантов столкновений чд, разная встречная скорость, разная масса, разного вида оболочки чд.
Все это отображается во внешнем виде вспышки.

46)Строение звезд
Звезда - раскаленный газовый шар. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой точке ей противодействует сила тяжести вышележащих слоев, пытающиеся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоев увеличивается, то давление и температура возрастают к центру звезды.
Звезда излучает энергию, вырабатываемую в ее недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться ее поверхностью.

Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается ее источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Излучение, покидающее поверхность звезды качественно отличается от излучения, рождающегося в источнике звездной энергии.
Оценки температуры и плотности в недрах звезд получают теоретическим путем. Определенные таким образом температуры в центральных областях звезд составляют от 10 млн. градусов для звезд легче Солнца до 30 млн. градусов для гигантских звезд. Температура в центре Солнца - около 15 млн. градусов.
При таких температурах вещество в звездных недрах почти полностью ионизировано. Атомы химических элементов теряют свои электронные оболочки, вещество состоит только из атомных ядер и отдельных электронов. Поскольку поперечник атомного ядра в десятки тысяч раз меньше поперечника целого атома, то в объеме, вмещающем всего десяток целых атомов, могут свободно уместиться многие миллиарды атомных ядер и отдельных электронов. При этом расстояния между частицами вопреки высокой плотности будут все еще велики по сравнению с их размерами.
Температура внутри звезды тем ниже, чем меньше его средняя молекулярная масса. А в звездном веществе все химические элементы, за исключением водорода и гелия, имеют среднюю молекулярную массу, равную примерно 2. Чем больше водорода и гелия по сравнению с более тяжелыми элементами, тем ниже температура в центре звезды.
Источники звёздной энергии

Ядра различных химических элементов образуются в результате термоядерных реакций, протекающих при температуре 10 – 30 млн. градусов и наличии большого числа ядер водорода. Годятся те ядерные реакции, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды.
Было установлено, что звезды большую часть своей жизни светят за счет совершающихся в них преобразований четырех ядер водорода (протонов) в одно ядро гелия. Масса четырех протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идет медленно и поддерживает свечение звезды на протяжении миллиардов лет.
Звезды образуются из космических газопылевых облаков. При сжатии под действием тяготения сгустка газа его внутренняя часть постепенно разогревается. Когда температура в центре достигает примерно миллиона градусов, начинаются ядерные реакции – образуется звезда.

47. Эволюция звезд

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. Закон Кулона) и вступить в реакцию термоядерного синтеза (см. Ядерный распад и синтез).

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга—Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

48. Теория расширяющейся Вселенной. Большой взрыв.


Расширяющаяся Вселенная


Многие знают, что согласно современным научным представлениям наша вселенная расширяется. Давайте попробуем разобраться в экспериментальных и теоретических вопросах этого расширения.

В 1929 году Эдвин Хаббл впервые экспериментально обнаружил эффект "разбегания" галактик. Позднее появился физический закон, названный законом Хаббла. Согласно этому закону, красное смещение удаленных объектов (звезд, галактик и т.д.) пропорционально их расстоянию от наблюдателя. Красное смещение отвечает за скорость объекта относительно наблюдателя и, таким образом, чем дальше от нас галактика, тем быстрее она от нас удаляется.

Разумеется, галактики удаляются не только от Земли, но и друг от друга. Наглядно представить себе такое расширение вселенной довольно легко. Представим себе небольшой воздушный шарик, на котором мы нарисуем различные космические объекты. Когда мы начнем надувать этот шарик, то расстояние между всему нарисованными объектами будет увеличиваться. Причем, чем больше будет расстояние между рисунками, там быстрее оно будет увеличиваться. Таким образом, мы получаем картину расширения вселенной под действием закона Хаббла. Математически закон Хаббла выражается очень просто:

v = Hr

Где v - скорость разбегания галактик, r - расстояние до галактики, H - постоянная Хаббла. Наиболее надёжная оценка H на 2008 год составляет (70,1±1,3) (км/с)/Мпк.

Закон Хаббла сразу вызвал ряд физических предположений. Если сейчас вселенная расширяется, значит можно предположить, что когда то давно она было очень маленькой. Возможны размеры вселенной были меньше атомного ядра. По непонятной причине произошел Большой Взрыв, в следствии которого вся материя приобрела скорость и стала разлетаться, образуя то, что мы сейчас называем наша вселенная.

Пока не будем останавливаться на большом взрыве, а займемся вопросом собственно расширения вселенной. На сегодняшний день весь процесс расширения вселенной от большого взрыва до настоящего времен описан уравнениями Фридмана. Александр Фридман первый сформулировал и решил нестационарные уравнения теории гравитации Эйнштейна в 1922 году.

В связи с развитием экспериментальной техники уравнения Фридмана представляют особый интерес. Дело в том, что уравнения этой модели содержат в себе несколько параметров, значение которых как раз определяются в эксперименте. От этих самых параметров зависит во первых, как выглядит наша вселенная, а во вторых, как она расширяется.

Поговорим в начале о том, какой вид имеет наша вселенная. Согласно современным представлениям наша вселенная есть 4 мерное риманово многообразие. Основной вопрос заключается в том, какую форму имеет это многообразие. В уравнения Фридмана входит такой параметр как критическая плотность вещества во вселенной.

Если плотность вещества во вселенной больше критической, то вселенная открытая, если меньше, то замкнутая или закрытая, а если в точности равна, то пространственно плоское. Согласно современным данным, плотность вещества во вселенной приблизительно равна критической плотности. Из-за слишком большой ошибки сказать что-то определенное по этому поводу не удается.





Дата публикования: 2014-11-04; Прочитано: 533 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...