Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Формула вероятностей гипотез (Байеса)



Рассмотрим снова – полную группу несовместных гипотез и событие . После опыта стало известно, что событие появилось, но не известно с какой гипотезой. Вычислим вероятности каждой из гипотез, после появления события . Это напоминает диагностику.

По формуле умножения имеем

(1.10.1)

откуда

(1.10.2)

подставляя в (1.10.2) формулу (1.9.3), находим формулу вероятностей гипотез Байеса

(1.10.3)

Она выражает перераспределение вероятности за счет поступления информации.

Пример 1.10.1. Исследование больного вызвало предположение о возможности трех заболеваний – . Для уточнения диагноза был проведен анализ, давший дополнительный результат с вероятностью 0,3; 0,9 и 0,1 при первом, втором и третьем заболевании, соответственно. Какова после этого вероятность каждого из заболеваний?

Решение. Обозначим положительный результат анализа. Вероятности гипотез

и условные вероятности

известны. Полная вероятность равна – .

Таким образом

Пример 1.10.2. Три охотника выстрелили по кабану, который оказался убитым одной пулей. Вычислить вероятность, что кабан убит каждым из охотников, если вероятности попадания для них равны 0,2; 0,4 и 0,6.

Решение. Обозначим – кабан убит одной пулей, – кабан убит первым охотником, – кабан убит вторым охотником, – кабан убит третьим охотником, – одиночное попадание первого охотника, – одиночное попадание второго охотника, – одиночное попадание третьего охотника.

Полная вероятность равна . Искомые вероятности равны





Дата публикования: 2014-11-03; Прочитано: 423 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...