Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Дифракція світла на дифракційній гратці 1 страница



Розглянемо дифракцію світла, зумовлену дією дифракційної гратки.

Дифракційна гратка – це система з великої кількості N однакових за шириною щілин і паралельних одна до одної, які лежать в одній площині і відокремлені непрозорими проміжками, однаковими за шириною. Для поясненнядифракцію світла, зумовлену дією дифракційної гратки використаємо рис. 2.12. На рис. 2.12 також BC=DP=a; CD=b; d=a+b – період дифракційної гратки.

Якщо монохроматична хвиля падає нормально на поверхню гратки, то коливання в усіх точках щілин відбуваються в однаковій фазі, оскільки ці точки лежать на одній хвильовій поверхні.

Запишемо результуючу амплітуду коливань у точці екрана Е, в якій збираються промені від усіх щілин гратки, що падають на лінзу L під кутом j до її головної оптичної осі . Якщо дифракційна гратка складається з N щілин, то умовою головних максимумів є вираз

, , (2.33)

а умовою головних мінімумів − вираз

, . (2.34)

Умова додаткових мінімумів

, (2.35)

або

, . (2.36)

Між двома сусідніми додатковими мінімумами утворяться максимуми, які називаються вторинними.

Між двома сусідніми головними максимумами знаходиться N –1 додаткових мінімумів і N– 2 вторинних максимумів. На них накладатимуться мінімуми, що виникають при дифракції від однієї щілини. Із формул і

видно, що головний максимум m- го порядку збігається з k- им мінімумом від одної щілини, якщо виконується рівність

, або .

На рис. 2.13 наведено розподіл інтенсивності світла в дифракційній картині від sin φ для і .

Пунктирна крива, що проходить через вершини головних максимумів, зображає інтенсивність, яка зумовлена дифракцією на одній щілині. Як видно з рис. 2.13, при відношенні головні максимуми 3 - го, 6 - го тощо порядків збігаються з мінімумами інтенсивності від однієї щілини, тому ці максимуми зникають.

Якщо дифракційну гратку освітлюють білим світлом, то для різних значень положення всіх головних максимумів, крім центрального, не збігаються один з одним. Тому центральний максимум має вигляд білої смужки, а всі інші – кольорових смужок, які називають дифракційними спектрами першого, другого і вищих порядків. У межах кожної смужки забарвлення змінюється від фіолетового біля внутрішнього краю, який найближчий до максимуму нульового порядку до червоного – біля зовнішнього краю дифракційної картини. Таким чином, дифракційна гратка розкладає немонохроматичне світло в дифракційний спектр і її можна використовувати як дисперсійний прилад.

12.Поляризація світла. Закон Брюстера.13 Поляризатори і аналізатори. Закон Малюса.

Наслідком теорії Максвелла є твердження про поперечність світлових хвиль: вектори напруженості електричного і магнітного полів електромагнітної хвилі взаємно перпендикулярні і коливаються перпендикулярно до вектора швидкості поширення хвилі. При розгляді світлових електромагнітних хвиль усі міркування зазвичай проводять для вектора , який називається світловим вектором, тому що він має визначальний вплив при дії світла на речовину. Площина, в якій відбувається коливання вектора , називається площиною поляризації, а перпендикулярна до неї площина – площиною коливань.

Світло є сумарним електромагнітним випромінюванням множини атомів. Атоми випромінюють світлові хвилі незалежно один від одного у вигляді хвильового цугу, в якому вектор коливається в одній площині. Хвильові цуги неперервно накладаючись змінюють один одного. Тому світлова хвиля, що випромінюється тілом, характеризується рівноймовірними напрямками коливань світлового вектора .

Природним (неполяризованим) називається світло з усіма можливими рівноймовірними орієнтаціями вектора (отже, і ) (рис. 2.14, а).

Поляризованим називається світло, в якому напрямки коливань вектора певним чином упорядковані.

Якщо коливання вектора світлової хвилі відбуваються в одній певній площині, то світло називається лінійно поляризованим (плоскополяризованим (рис. 2.14, б). У випадку, коливектор описує еліпс в площині перпендикулярній до напрямку поширення променя, то така хвиля називається еліптично поляризованою, а якщо коло - поляризованою по колу (циркулярно поляризованою).

Коли вектор обертається проти годинникової стрілки в площині перпендикулярній до напрямку поширення променя, то поляризація називається правою, а в протилежному випадку – лівою.

Якщо внаслідок яких-небудь зовнішніх впливів має місце переважаючий напрямок коливань вектора , то світло є частково поляризованим (рис. 2.14, в).

Для характеристики поляризаційного стану використовують величину, яку називають ступінню поляризації:

, (2.37)

де і – відповідно, максимальна і мінімальна інтенсивність світла, що відповідають двом перпендикулярним компо­нентам вектора . Для природного світла = і Р= 0. Для плоскополяризованого – = 0 і Р= 1.

Поляризацією світла називається виділення лінійно поляризованого світла з природного або частково поляризованого.

Плоскополяризоване світло можна отримати з природного за допомогою приладів, які називаються поляризаторами. Ці прилади вільно пропускають коливання, паралельні до площини поляризації, яка називається головною площиною, і повністю або частково затримують коливання, які перпендикулярні цій площині. В ролі поляризаторів можуть бути середовища, які анізотропні відносно коливань вектора , наприклад, кристали. Одним із природних кристалів, які використовуються як поляризатори, є турмалін. Прилади, за допомогою яких аналізують ступінь поляризації світла, називають аналізаторами.

Якщо на поляризатор падає природне світло (рис. 2.15), то при вході в поляризатор падаючу хвилю, вектор напруженості електричного поля якої коливається у площині, що утворює з головною площиною поляризатора р–р кут , можна зобразити у вигляді двох коливань у взаємно перпендикулярних площинах (рис. 2.15). Причому амплітуди коливань можна виразити таким чином:

; .

Перше коливання з амплітудою пройде через поляризатор, а друге з амплітудою буде затримане поляризатором. Отже, при цьому . Оскільки інтенсивність світла пропорційна квадратові амплітуди світлового вектора (), то співвідношення можна записати таким чином:

, (2.38)

де – інтенсивність коливань з амплітудою .

В природному світлі всі значення j рівноймовірні. Тому частка світла, що пройшло через поляризатор, буде дорівнювати середньому значенню , тобто і . Якщо на аналізатор падає лінійно поляризоване світло, отримане за допомогою поляризатора, головна площина якого p–p утворює кут з головною площиною аналізатора a–a, то значення інтенсивності світла на виході з аналізатора буде виражатися формулою

. (2.39)

Якщо аналізатор і поляризатор не є абсолютно прозорими, то

, (2.40)

де – кофіцієнт прозорості поляризатора, - коефіцієнт прозорості аналізатора.

Отримані співвідношення (2.39) і (2.40) виражають закон Малюса.

З співвідношень (2.39) та (2.340) випливає, що зі зміною кута між головними площинами поляризатора і аналізатора змінюється інтенсивність світла : якщо , то після аналізатора буде спостерігатися максимальна інтенсивність світла (світло повністю проходить через аналізатор), якщо , то =0 − мінімальна інтенсивність світла (світло повністю гаситься).

Якщо природне світло падає на межу поділу двох діелектриків, наприклад, повітря і скла, то частина його відбивається, а частина заломлюється і поширюється у другому середовищі. При цьому відбитий і заломлений промені частково поляризовані: при повертанні аналізатора навколо променів інтенсивність світла періодично посилюється і ослаблюється, але повного гасіння не спостерігається.

Дослідження показали, що у відбитому промені переважають коливання, перпендикулярні до площини падіння (), а в заломленому – коливання, паралельні площині падіння () (рис. 2.16).

Ступінь виділення світлових хвиль з певною орієнтацією електричного вектора залежить від кута падіння променів і показника заломлення .

Відбитий промінь є повністю лінійно поляризованим в площині, яка перпендикулярна площині падіння променя, якщо кут падіння задовольняє умову , (2.41)

де - показник заломлення другого середовища відносно першого.

Цей закон називається законом Брюстера, а кут - кутом Брюстера.

14.Геометрична оптика – граничний випадок хвильової оптики. Закони відбивання та заломлення світла. Розділ оптики, в якому закони поширення світла розглядаються на основі уявлень про світлові промені, називається геометричною оптикою. Під світловими променями розуміють нормальні (перпендикулярні) до хвильових поверхонь лінії, вздовж яких поширюється потік світлової енергії. Світловий промінь – це абстрактне математичне поняття, а не фізичний образ. Геометрична оптика є лише граничним випадком хвильової оптики.

Основу геометричної оптики складають такі закони:

1. Закон прямолінійного поширення світла: світло в оптично однорідному середовищі поширюється прямолінійно.

2. Закон незалежності світлових пучків: світлові пучки від різних джерел при накладанні діють незалежно один від іншого і не впливають один на одного.

3. Закон відбивання світла: падаючий на межу розділу двох оптично неоднорідних середовищ промінь , відбитий промінь і перпендикуляр, поставлений до межі розділу в точці падіння, лежать в одній площині; кут відбивання променя від межі розділу двох середовищ дорівнює куту падіння променя (рис. 1.1).

4. Закон заломлення світла: падаючий на межу розділу двох оптично неоднорідних середовищ промінь , заломлений в друге середовище промінь 3 і перпендикуляр, проведений до межі розділу в точці падіння, лежать в одній площині (рис. 1.1); відношення синуса кута падіння до синуса кута заломлення променя є величиною сталою для двох даних середовищ, визначається відношенням швидкості поширення світла в першому середовищі до швидкості поширення світла в другому середовищі і називається відносним показником заломлення другого середовища відносно першого:

. (1.1)

Показник заломлення даного середовища відносно вакууму називають абсолютним показником заломлення середовища. Чисельно абсолютний показник заломлення дорівнює відношенню швидкості (~ 300000 км/с) поширення світла у вакуумі до швидкості поширення світла в середовищі:

. (1.2)

Швидкість світла в середовищі є меншою за швидкість світла у вакуумі, тому абсолютний показник заломлення реальних середовищ є числом більшим за одиницю. Для повітря, наприклад, . Оскільки мало відрізняється від одиниці, то практично показник заломлення середовища виражають відносно повітря, а не відносно вакууму. Для того, щоб одержати значення абсолютного показника заломлення середовища відносно вакууму, значення показника заломлення середовища відносно повітря потрібно помножити на абсолютний показник заломлення повітря.

Числове значення відносного показника заломлення може бути як більшим, так і меншим за одиницю в залежності від того, з якими швидкостями поширюється світло в межуючих середовищах, тобто в залежності від значення їх абсолютних показників заломлення і , оскільки

. (1.3)

З (1.3) випливає, якщо друге середовище оптично густіше за перше ( > ), то відносний показник заломлення >1 і кут заломлення променя менший за кут його падіння (рис. 1.1).

Якщо перше середовище є оптично густіше за друге ( > ), то <1 і кут більший за кут (рис. 1.2, а). При збільшені кута падіння променя 1 реалізується ситуація, коли заломлений промінь 3 буде поширюватися вздовж межі розділу середовищ, тобто коли кут =900 (рис. 1.2, б). Тоді кут падіння і називається граничним кутом. Якщо світловий промінь падатиме на межу розділу двох середовищ під кутом , більшим за граничний кут , то спостерігатиметься явище повного внутрішнього відбивання: падаючий промінь 1 повністю відіб’ється від межі розділу середовищ, залишаючись при цьому всередині оптично густішого середовища (рис. 1.2, в). Для граничного кута падіння

. (1.4)

Явище повного внутрішнього відбивання використовується в призмах повного відбивання, які дозволяють повертати промені на 900 або 1800. Такі призми застосовуються в оптичних приладах (наприклад, в біноклях, перископах). Явище повного внутрішнього відбивання знайшло використання також в рефрактометрах, світловодах і т.д.

Cвітловоди – це тонкі нитки (волокна) з оптично прозорого матеріалу. В волоконних деталях світловодів використовують скловолокно, світловедуча жила (серцевина) якого оточена іншим склом (оболонкою) з меншим показником заломлення. Світло, яке попадає в світловод під кутами падіння, що перевищують граничний кут , зазнає на межі розділу серцевина–оболонка повне внутрішнє відбивання і поширюються лише по світловедучій жилі. Питання передачі світлових зображень вивчаються в спеціальному розділі оптики – волоконна оптика.

15.Заломлення світла на сферичній поверхні лїнзи. Роздільна здатність мікроскопа та телескопа.

Для отримання різного роду зображень в оптичних приладах широко використовують лінзи. Лінзою називають оптично прозоре тіло, що обмежене двома гладкими випуклими або вгнутими поверхнями (одна з них може бути плоскою).

Найчастіше поверхні лінз роблять сферичними, а саму лінзу виготовляють із спеціальних сортів скла, наприклад, флінтгласу, або інших речовин з відповідними показниками заломлення. Якщо відстань між обмежуючими поверхнями в центрі лінзи значно менша за радіуси їх кривизни, то така лінза називається тонкою. Лінза називається збиральною, якщо вона є товстіша до середини, і розсіювальною, коли – тонша до середини. Для тонких лінз справедливе співвідношення:

, (1.5)

де – відстань від оптичного центра лінзи до предмета ; – відстань від оптичного центра лінзи до зображення предмета; і – радіуси кривизни обмежуючих лінзу поверхонь (рис. 1.3); – показник заломлення прозорого для світла матеріалу, з якого виготовлена лінза; – показник заломлення середовища, що оточує лінзу.

Пряму, яка проходить через центри і сферичних поверхонь, називають головною оптичною віссю лінзи.

Величини , , і – входять в (1.5) зі знаком “+” або “–“. У випадку, якщо яка – небудь із цих величин відкладається від оптичного центра лінзи в сторону, протилежну напрямку поширення світла, їй приписується знак “–“, в іншому випадку – знак “+”.

Якщо на збиральну лінзу направити пучок променів, паралельних до її головної оптичної осі, то після заломлення в лінзі вони зберуться в точці F, яка розташована на головній оптичній осі з другого боку лінзи (рис. 1.4, а). Точку називають головним фокусом лінзи. У розсіювальної лінзи промені після проходження лінзи поширюються розбіжним пучком, але таким чином, що їх продовження сходяться в точці F, зі сторони падаючого пучка (рис. 1.4, б).

В збиральній лінзі головний фокус є дійсним, а в розсіювальній − уявним. Кожна лінза має два головні фокуси, які розташовані симетрично відносно її оптичного центра . Відстань між головним фокусом лінзи та її оптичним центром називають фокусною відстанню лінзи.

Величина, яка обернена до фокусної відстані лінзи називається оптичною силою лінзи.

Одиницею вимірювання оптичної сили в системі СІ є діоптрія (дптр) − оптична сила такої лінзи, головна фокусна відстань якої дорівнює 1 м. Для тонких лінз фокусна відстань , оптична сила , відстані від лінзи до предмета і до зображення пов’язані співвідношенням, яке називають формулою тонкої лінзи:

. (1.6)

Оптична сила збиральної лінзи є додатною, а розсіювальної – від’ємною.

Зображення предмета в лінзі є сукупністю зображень окремих його точок. Тому для побудови зображення предмета досить знайти зображення його крайніх точок.

В багатьох оптичних приладах, наприклад, в мікроскопі, для одержання збільшеного зображення предметів використовують систему лінз (рис. 1.7).





Дата публикования: 2014-11-04; Прочитано: 3832 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...