Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Характеристики технологических укладов



Характе-ристика Технологический уклад
1-й 2-й 3-й 4-й 5-й
Период доминирования 1770―1830 гг. 1830―-1880 гг. 1880―1930 гг. 1930―1980 гг. от 1980―1990 гг. до 2030―2040 гг.
Технологические лидеры Великобритания, Франция, Бельгия Великобритания, Франция, Бельгия, Германия, США Германия, США, Великобрита- ния, Франция, Бельгия, Швейцария, Нидерланды США, страны Западной Европы, СССР, Канада, Австралия, Япония, Швеция, Швейцария Япония, США, ЕС, Швеция
Развитые страны Германские государства, Нидерланды Италия, Нидерланды, Швейцария, Австро-Венгрия, Россия Россия (СССР), Италия, Дания, Австро-Венгрия, Канада, Япония, Испания, Швеция СССР, Бразилия, Мексика, Китай, Тайвань, Индия Бразилия, Мексика, Аргентина, Венесуэла, Китай, Индия, Индонезия, Турция, Восточная Европа, Канада, Австралия, Тайвань, Корея, Россия и СНГ
Ядро технологического уклада Текстильная промышленность, текстильное машиностроение, выплавка чугуна, обработка железа, строительство каналов, водяной двигатель Паровой двигатель, железнодорожное строительство, транспорт, машиностроение, пароходостроение, угольная промышленность, станкоинструментальная промышленность, черная металлургия Электротехническое, тяжелое машиностроение, производство и прокат стали, линии электропередач, неорганическая химия Автомобилестроение, тракторостроение, цветная металлургия, производство товаров длительного пользования, синтетические материалы, органическая химия, производство и переработка нефти Электронная промышленность, вычислительная, оптико-волоконная техника, программное обеспечение, телекоммуникации, роботостроение, производство и переработка газа, информационные услуги
Ключевой фактор Водяные колеса Паровой двигатель ТЭС, ГЭС ТЭС, ГЭС, ветроэнергоустановки, солнечные батареи Когенерационные станции, геоТЭС, ветроустановки, солнечные батареи
Энергоисточники Древесный уголь Каменный уголь Каменный уголь, нефть Нефть, уголь, газ, энергия солнца и ветра, атомная энергия Гидротермальные источники, энергия солнца и ветра, биоресурсы

Неравномерность технико-экономического развития определяется процессами взаимодействия и замещения технологических совокупностей, составляющих ТУ.

В мировом технико-экономическом развитии, начиная с промышленной революции в Англии и до наших дней, можно выделить периоды доминирования пяти сменявшихся технологических укладов. Каждому технологическому укладу свойственен определенный набор материалов, применение энергоресурса, использование определенной технологии сжигания топлива для обогрева и освещения жилищ.

С формированием первогоТУ началась эпоха экономического роста, ключевым фактором которого явилась механизация текстильной промышленности. Базисными инновациями этого уклада были прядильные машины и ткацкие станки.

В Европе в это время в качестве основного энергоресурса для обогрева жилищ использовали дрова, и только в Англии каменный уголь в качестве топлива для обогрева жилищ применяли еще со времен нормандского завоевания. Уже в 1800 г. в Англии было добыто 15 млн т угля, в то время как во всей континентальной Европе добыча угля не превысила 3 млн т. Теплотворная способность угля в два раза выше, чем у сухих дров, а его запасы оказались намного больше лесных ресурсов. Поэтому с этого времени в промышленности начинается процесс замещения дров каменным углем, который достигает своего апогея во втором технологическом укладе.

Развитие науки и техники в этот период позволило построить первые машины, т.е. механизмы, преобразующие энергию в полезную работу. В 1784 г. ученый механик Джеймс Уатт сконструировал паровую машину. Это было изобретение мирового значения, позволившее через несколько десятилетий обеспечить паровыми двигателями фабрики и железные дороги. Механизация текстильной промышленности стимулировала производство конструкционных материалов, которое послужило толчком для развития металлургии. В 30-х гг. XVIII в. Дерби открыл способ выплавки чугуна на каменном угле. Но массовое производство конструкционных материалов из чугуна стало возможным только с формированием второго технологического уклада и с увеличением спроса на черные металлы.

Использование парового двигателя революционизировало промышленное производство и стало основой его развития. Успехи в добыче угля и производстве чугуна к концу XVIII в. привели к промышленной революции.

Каменный уголь в этот период становится основным энергоносителем не только в Англии, но и во всей Европе. В 80-х гг. английским металлургом Кортом был изобретен способ переплавки чугуна на железо на каменном угле (пудлингование). Поскольку каменного угля в Англии было достаточно, английская металлургия быстро вышла на первое место в мире.

Промышленная революция проходила как цепная реакция. Изобретения влекли за собой другие изобретения. Переворот начался с легкой промышленности, но в ходе него создавался рынок для тяжелой. Так, для изготовления массы машин для легкой промышленности, требовалось много металла; спрос на машины нельзя было удовлетворить, изготовляя их в кустарных мастерских с ручным трудом. Это вызвало переворот в машиностроении: началась индустриализация ― создание крупного машинного производства. Рост производства, развитие рыночных отношений потребовали кардинального решения транспортных проблем, поскольку уже невозможно было перевозить массу товаров на лошадях и парусных судах. Ускоренными темпами стал развиваться железнодорожный транспорт.

Широкая механизация труда и концентрация производства сопровождались ростом тяжелого машиностроения и горнодобывающей промышленности, развитием металлургии и станкостроения, что, в свою очередь, создало предпосылки для становления базисных производств третьего ТУ.

Главной отличительной чертой третьеготехнологического уклада стало широкое использование электродвигателей и развитие электротехники. Строительство ЛЭП обеспечило внедрение адекватной технологии энергопотребления в городах и усиливало процесс урбанизации. Эдисон организовал массовое производство электроламп, добившись рекордно низкой себестоимости. Электроэнергия стала широко применяться в быту.

В это же время получила развитие нефтяная отрасль. В США началась нефтяная лихорадка ― в 1869 г. в Пенсильвании была пробурена первая нефтяная скважина, затем в Техасе и Калифорнии. Началась переработка нефти в промышленных масштабах. К 1900 г. нефтяные промыслы открылись в Баку и Румынии. Перед началом первой мировой войны добыча нефти развернулась в Мексике, Венесуэле и Иране.

В это же время, положено начало использования электрической энергии в быту. Начался процесс монополизации во многих отраслях, выражающийся в увеличении масштабов производства и создании предприятий с иерархическими системами управления современного типа. Например, компания «Дженерал Электрик», которой принадлежал патент на изобретение лампочек накаливания с вольфрамовой нитью, господствовала на рынке вплоть до 1930 г.

Рост машиностроительного производства стимулировал прогресс в черной металлургии, которая стала главным поставщиком конструкционных материалов в промышленность. В ходе жизненного цикла третьего ТУ произошел переход к новым способам получения металлов ― внедрены доменная и мартеновская технологии, технология проката стали, обеспечившие производство дешевой стали. Другое направление научно-технологического прогресса в рамках третьего ТУ ― развитие химической промышленности. В этот период в промышленных масштабах начали производить минеральные удобрения, взрывчатые вещества, освоено коксохимическое и нефтехимическое производства и др. Эти технологии создали предпосылки для развития четвертого ТУ.

Среди важнейших предпосылок четвертого ТУ, сформировавшихся в период доминирования третьего, следует также указать на развитие автодорожной транспортной инфраструктуры, сетей телефонной связи, создание инфраструктуры нефтедобычи. В этот период был внедрен двигатель внутреннего сгорания и произошло становление автомобильной отрасли. Технологические совокупности третьего ТУ продолжали воспроизводиться в развитых странах вплоть до 60-х гг., но уже в послевоенные годы четвертый ТУ занял доминирующее положение.

В числе отраслей, входивших в ядро этого уклада, были химическая промышленность органического синтеза и связанные с ней производства смол и синтетических пластмасс, автомобиле- и тракторостроение, производство моторизованных вооружений. Для этого уклада характерно развитие комплексной механизации и автоматизации производства, повышение уровня специализации. В последние 10―15 лет доминирования этого уклада в развитых странах произошло насыщение рынка потребительских товаров. Для дальнейшего экономического роста необходимо было обеспечить рост конкурентоспособности продукции. Это инициировало бурное инновационное развитие во многих отраслях, замещение базовых технологий. В период доминирования четвертого ТУ сформировалась теоретическая и технологическая база электроники, обеспечившая развитие информационных технологий, развитие высоких технологий, в том числе космических.

В течение четвертого периода произошел количественный и качественный скачок в развитии энергетики. В 1954 г. в СССР была введена в эксплуатацию первая в мире атомная электростанция мощностью всего 5000 кВт, но уже к 70-м гг., когда в развитых странах практически завершился ЖЦ четвертого ТУ, мощность АЭС в мире составила МВт и вырабатывалось ими % мировой выработки. В электроэнергетике на протяжении двух десятилетий уровень напряжения при дальнем транспорте электроэнергии превысил 1000 кВ, что обеспечило возможность передачи электрической мощности на тысячи километров. Повышение начальных параметров пара в теплоэнергетике обеспечило повышение КПД на %. Развитие энергетики явилось толчком для создания специализированных жаропрочных и устойчивых к облучению материалов. Кроме того, в этот период началось производство так называемых композитных материалов, позволивших успешно решить многие инженерные задачи.

ПятыйТУ можно назвать укладом информационных, коммуникационных технологий и биотехнологий. В связи с ухудшением состояния окружающей среды, неблагоприятных прогнозов относительно запасов нефти, газа на первый план выходит проблема энергосбережения.

Начало этого уклада связывают с развитием средств коммуникации, цифровых и компьютерных сетей и генной инженерии. Пятый ТУ активно генерирует создание и непрерывное совершенствование как новых машин и оборудования (компьютеров, ЧПУ, роботов, обрабатывающих центров), так и информационных систем (баз данных, локальных и интегральных вычислительных систем, информационных языков и программных средств переработки информации). Важное значение среди несущих производств пятого ТУ в обрабатывающей промышленности имеют гибкие автоматизированные производства (ГАП). Гибкая автоматизация промышленности существенно расширяет разнообразие выпускаемой промышленности. Другой характерной чертой пятого уклада является процесс дезурбанизации. Свободный доступ к глобальным системам массовой информации, автономные источники энергопитания, развитие автотранспорта меняет представлении о времени и пространстве.

Нефтяной кризис 70-х гг. заставил развитые западные страны ужесточить нормы по энергосбережению, оказал большое влияние на развитие малой энергетики на базе альтернативных источников энергии. В этот период большое внимание стали уделять созданию энергоэкономичного жилья.

В связи с резким удорожанием углеводородов усилилось внимание к развитию ядерных технологий. Чернобыльская авария заставила больше внимания уделять развитию газовых технологий в сфере тепловой генерации.

В течение ЖЦ пятого ТУ формируются элементы шестого технологического уклада. Ядро шестого ТУ составляют нанотехнологии, CALS -технологии, биотехнологии ― биоинформатика, протеомика, геномика, фотоника и микромеханика.

Нанотехнологии ― это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, сопоставимая с размерами атома. Их использование позволяет принципиально по-новому решать многие проблемы, создавать устройства на макроуровне. Они применимы практически во всех сферах деятельности: в научных исследованиях, информатике, медицине и промышленности. По оценке экспертов через 10―15 лет развитие этих технологий позволит создать новую отрасль экономики с оборотом примерно в 10―15 млрд долл.

CALS-технологии ― это единая стратегия правительства и бизнеса по формированию бизнес-процессной высокоавтоматизированной и интегрированной системы управления ЖЦ продукта. Для решения этой проблемы необходимо создание единого информационного пространства, использование принципов стандартизации и унификации в информационной сфере; применение информационных моделей, являющихся единым источником информации и стандартизированных методов доступа к данным множества пользователей ― участников деятельности по производству и использованию продукта на всех этапах его ЖЦ.

Развитие биотехнологий связано, в первую очередь, с успехами в сфере генетики: на базе изучения закономерностей физических, химических и информационных процессов в живых организмах разрабатываются методы изменения свойств и возможностей живого организма, создаются новые организмы, обладающие запрограммированными свойствами.

В течение ЖЦ шестого ТУ формируются элементы седьмого технологического уклада. В сфере энергетики на первое место ожидается выход водородной энергетики, которая может решить проблему обеспечения человечества энергоресурсами на прогнозируемую перспективу развития цивилизации. Она начала формироваться в рамках четвертого технологического уклада, когда широко стали применяться промышленные установки производства водорода. В настоящее время в промышленных масштабах начинается освоение водородного топлива для автотранспорта; через 10―15 лет ожидается ввод в эксплуатацию электростанций на водородном топливе.

Концепция технико-экономического развития в виде последовательной смены ТУ базируется на эволюционной теории экономического роста и анализе длинных волн экономической конъюнктуры, выявленных русским экономистом Н.Д. Кондратьевым.

Эмпирические исследования процессов технико-экономического развития многих экономистов подтверждают выявленные закономерности. Большой вклад в становление теории ТУ внес российский ученый С.Ю. Глазьев. Разработанная им методология имитационного моделирования на базе этой теории позволяет решать следующие задачи технико-экономического развития:

- прогнозирования траектории технико-экономического развития на макроуровне;

- выявления взаимосвязей и пределов развития по условию конкурентоспособности отдельных технологических совокупностей;

- определения экономически обоснованной стратегии технологического развития отдельных производств и отраслей.

Вопросы для повторения





Дата публикования: 2014-11-03; Прочитано: 986 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...