Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Электрической сети



Основные элементы, образующие в своей совокупности электрическую сеть, - это линии электропередачи и трансформаторные подстанции. Для расчета электрического режима сети (потоков мощности на участках, напряжений в узловых точках, токов и т.д.) необходимо знать их параметры.

Под параметрами линий электропередачи понимают активное и реактивное сопротивления проводов (или токопроводящих жил, если линия кабельная), а также активные и реактивные проводимости между проводами и между проводами и землей, которые учитывают утечки тока через изоляцию, коронный разряд и электрическую емкость. Все параметры представляются в расчете на одну фазу. Существуют два варианта представления этих параметров: погонные параметры и параметры схемы замещения. Погонные параметры отражают свойства линии на единицу ее длины (обычно на один километр), а параметры схемы замещения - свойства всей линии. Строго говоря, любая линия электропередачи должна представляться, как линия с распределенными параметрами, поскольку ввиду большой протяженности в ней имеют место волновые явления. Но в этом случае расчеты режимов значительно усложняются. Поэтому на практике для линий длиной до 300…400 км (это обычно линии питающих сетей напряжением 35…220 кВ и линии распределительных сетей 6…35 кВ) волновые явления ввиду их очень слабого проявления не учитывают и представляют линию в виде П-образной схемы замещения с сосредоточенными параметрами. При этом с целью облегчения последующего расчета электрического режима делают и некоторые дополнительные упрощения. Так, в воздушных линиях до 35 кВ не учитывается емкостная проводимость, а в линиях до 220 кВ не учитывается также и активная проводимость. Если емкость учитывается, то удобно учесть ее не в виде проводимости, а в виде так называемой зарядной мощности. Для системообразующих линий и линий межсистемной связи, имеющих большую протяженность и напряжения 330 кВ и выше, волновыми явлениями пренебрегать нельзя, соответственно, нельзя пользоваться и схемами замещения с сос-редоточенными параметрами, поэтому для них обычно рассчитывают только погонные значения активного и реактивного сопротивлений. При этом нужно учитывать, что провода в фазах таких линий обычно расщеплены. Кроме, того для таких линий определяется волновое сопротивление, коэффициент распространения волны (комплексные значения), а также натуральная мощность и волновая длина. Параметры подстанций определяются параметрами входящих в них трансформаторов. Их определение производится на основе каталожных данных. Двухобмоточные трансформаторы представляются Г-образной схемой замещения. При этом определяются активное и реактивное сопротивления, отображающие потери в обмотках и активная и реактивная проводимости, отображающие потери холостого хода. Потери в обмотках и потери холостого хода также являются параметрами. И более того, часто бывает более удобно включать в схему замещения потери холостого хода вместо соответствующих проводимостей. Для трехобмоточных трансформаторов и автотрансформаторов, а также для трансформаторов с расщепленными обмотками продольная ветвь схемы замещения представляется в виде звезды, где каждой обмотке соответствует свой луч. При расчете их параметров сле-дует искать в каталоге (или предварительно определять) потери короткого замыкания и напряжения короткого замыкания для каждой обмотки.

Перед решением задач этой главы рекомендуется изучить [1, с.54...77].

ЗАДАЧА 1.1. Определить параметры одноцепной ВЛ-10кВ, выполненной проводом марки А-35 со среднегеометрическим расстоянием между фазами 1,4м. Длина линии 7,6 км. Составить схему замещения линии.

РЕШЕНИЕ. Определяем активное погонное сопротивление линии:

Здесь - удельное сопротивление алюминия;

- сечение провода;

(По данным ГОСТ 839-80

Определяем погонное реактивное сопротивление линии:

0

Здесь среднегеометрическое расстояние между фазами.

Зарядная мощность ВЛ напряжением 35кВ и ниже обычно не учитывается.

Схема замещения линии:

Параметры схемы замещения:

Здесь длина линии.

ЗАДАЧА 1.2. Определить параметры двухцепной ВЛ-110кВ, выполненной проводом марки АС-120/27 на одностоечных железобетонных опорах со среднегеометрическим расстоянием между фазами 3,5 м.. Длина линии - 64 км.

РЕШЕНИЕ. Активное погонное сопротивление линии и диаметр провода определяем по [3, табл. П.1-2]:

Погонное реактивное сопротивление линии определяем по [3,табл.П.1-3], произведя соответствующую интерполяцию:

Погонную ёмкостную проводимость линии определяем по [3,табл.1-4]:

(Эту же величину можно было бы определить и расчетным путем:

Составляем схему замещения линии (2 варианта) и определяем её параметры, учитывая, что линия двухцепная:

ЗАДАЧА 1.3 Определить погонные параметры одноцепной ВЛ-500кВ, выполненной с фазой, расщепленной на три провода марки АС-330/43 с расположением проводов фазы по вершинам равностороннего треугольника с расстоянием между проводами a = 400 мм. Линия смонтирована на портальных металлических опорах с горизонтальным расположением фаз и расстоянием между центрами фаз 11 м. Среднегодовые потери активной мощности на корону принять 7,5 кВт/км. Длина линии 450 км. Определить также волновое сопротивление, коэффициент распространения волны, волновую длину и натуральную мощность линии.

РЕШЕНИЕ. Определяем активное погонное сопротивление провода и его диаметр (по справочным данным):

Активное погонное сопротивление фазы (при числе проводов n= 3):

Эквивалентный радиус фазы:

Среднегеометрическое расстояние между фазами:

Погонное индуктивное сопротивление:

Погонная ёмкостная проводимость:

Активная погонная проводимость:

Волновое сопротивление линии:

Коэффициент распространения волны:

Волновая длина линии:

Натуральная мощность линии:

ЗАДАЧА 1.4. Определить параметры одноцепной ВЛ-6 кВ, выполненной стальным проводом ПС-25 со среднегеометрическим расстоянием между фазами 1,25 м. Длина линии - 4 км, а её нагрузка колеблется от 10 А до 30 А.

РЕШЕНИЕ. Погонное активное сопротивление линии при токах 10 А и 30 А определяем по [3,табл.П.1-6]:

Из этой же таблицы берём погонную величину внутреннего индуктивного сопротивления линии:

Внешнее индуктивное сопротивление от величины тока не зависит. Его определяем по [3,табл.П1-5]:

Погонное индуктивное сопротивление линии:

Определяем параметры схемы замещения:

ЗАДАЧА 1.5. Определить активное и индуктивное сопротивления кабельной линии 10 кВ длиной 260 м, выполненной пучком из 6 кабелей типа ААБ 3х240.

РЕШЕНИЕ. Погонные параметры кабеля определяем по [3,табл.П.1-9]

Рассчитываем сопротивления линии:

ЗАДАЧА 1.6. На понижающей подстанции 11О/6 кВ установлены 2 трансформатора ТМН-6300/110, включенные на параллельную работу. Определить параметры схемы замещения подстанции, приведенные к стороне высшего напряжения и найти потери мощности в ней, если нагрузка подстанции составляет: .

РЕШЕНИЕ. По [1,табл.П7] находим каталожные данные трансформаторов:

Составляем схему замещения подстанции:

Определяем параметры одного трансформатора.

Определяем параметры схемы замещения подстанции, учитывая, что на ней 2 трансформатора.

Определяем потери мощности на подстанции.

Здесь - количество трансформаторов на подстанции.

ЗАДАЧА 1.7. На районной понижающей подстанции установлены два трехобмоточных трансформатора ТДТН - 40 000 / 220 с соотношением мощностей обмоток 100 % /100 % /100 % со следующими каталожными данными:

Нагрузка на шинах среднего и низшего напряжения составляет:

Определить приведенные к стороне высшего напряжения параметры схемы замещения двух параллельно включенных трансформаторов и общие потери мощности в них.

РЕШЕНИЕ. Составляем схему замещения.

Определяем напряжения короткого замыкания, соответствующие лучам схемы замещения.

Поскольку значение задано только при одном опыте короткого замыкания, а номинальные мощности всех обмоток по условию равны, то принимаем, что при всех опытах короткого замыкания имеют одну и ту же величину. Поэтому:

При этом активные сопротивления лучей также равны между собой:

Определяем индуктивные сопротивления схемы замещения:

Определяем потери холостого хода:

Определяем общие потери мощности в трансформаторах. При этом считаем, что

ЗАДАЧА 1.8. Определить параметры схемы замещения трехобмоточного автотрансформатора АТДЦТН-200 000/220/110. Расчетная мощность обмотки низшего напряжения. Автотрансформатор имеет следующие каталожные данные:

РЕШЕНИЕ. Приводим потери мощности в режиме короткого замыкания ВН и СН к номинальной мощности трансформатора. Так как в соответствии с условиями задачи мощность обмотки низшего напряжения составляет 0,5 от номинальной мощности трансформатора, то:

Определяем потери мощности короткого замыкания и напряжения ко-роткого замыкания, соответствующие лучам схемы замещения.

Определяем параметры схемы замещения.





Дата публикования: 2014-11-02; Прочитано: 7847 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.018 с)...