Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Министерство образования РФ 2 страница. 1. Локализация звука в пространстве



1. Локализация звука в пространстве.

2. Усиление звукового сигнала (резонансное).

3. Механическая защита БП.

4. Обеспечение микроклимата, что необходимо для нормального функционирования БП.

По СУ звук проводится цепочкой слуховых косточек: М, Н, С. рукоятка М зафиксирована на БП, а его головка образует сустав с Н, который сочленяется с С. Основание С погружено в ОО, которое служит входом во ВУ, поэтому система БП и слуховых косточек СУ выполняет роль связующего звена между атмосферой и ВУ, заполненным жидкостью. Если бы звук переходил из воздуха в жидкость непосредственно, то интенсивность звуковой волны падала бы из-за сильного отражения звука на границе раздела сред с различным акустическим импедансом [ ]. Жидкость обладает большей по сравнению с воздухом. БП (исключает) и система слуховых косточек обеспечивает согласование воздуха и жидкости ВУ, вследствие чего уменьшаются потери интенсивности звуковой волны при переходе из атмосферы во ВУ.

Согласование и усиление звука обеспечивается благодаря двум обстоятельствам:

1. Поверхность БП примерно в 25 раз больше площади ОО, за счет разницы в площадях на входе и выходе системы механической передачи происходит усиление давления на жидкость ВУ, относительно звукового давления, воздействующего на БП.

2. Слуховые косточки так расположены в цепочке, что при их движении, они образуют рычаги силы и увеличивают давление на основание С по сравнению с давлением на рукоятку М. Вся система передачи звука в СУ работает наподобие гидравлического пресса с примерно 90 кратным выигрышем в силе.

Максимальный коэффициент усиления давления характерен для звуковых волн с f примерно 1 кГц. Звуковые колебания, как меньших, так и больших f, усиливаются слабее, так как для них слуховые косточки СУ хуже согласовывают , и часть звуковых волн с f примерно 1 кГц, при их средней интенсивности, передается на ВУ практически без потерь. Однако, и для них коэффициент передачи может снижаться и оказывается даже меньше 1. Это имеет место в том случае, когда звук становится слишком интенсивным. Это сопровождается ощущение покалывания, а затем и боли в ушах. Понижение коэффициента передачи происходит при помощи тоненьких мышц, которые прикрепляются к М и С. В ответ на сильные звуки, они рефлекторно сокращаются и уменьшают подвижность системы слуховых косточек.

Итак, систему передачи звука, сосредоточенную в СУ, можно считать механическим преобразователем (усилителем), обладающим переменными регулируемым коэффициентом передачи давления с БП на жидкость ВУ. При разрушении слуховых косточек слух полностью не теряется, но понижается примерно в 1000 раз.

СУ выполняет следующие функции:

1. Связующую между атмосферой и ВУ.

2. Согласования атмосферы (воздуха) и жидкости ВУ.

3. Усиление звукового сигнала.

4. Защитная, при больших интенсивностях звука.

СТРОЕНИЕ ВНУТРЕННЕГО УХА

Внутреннее ухо (ВУ) человека размещается в пирамидальной части височной кости. Часть этого причудливого лабиринта, содержащая слуховые рецепторы, напоминает улитку в форме конусообразной спирали, образующей 2,5 витка. Схематично костную часть улитки можно представить в виде:

a б

Костная улитка.

а – стержень улитки; б – улитка в разрезе

Внутри улитки имеется просвет с круглым поперечным сечением, повторяющим ее спиралевидное закручивание вокруг костного стержня. От стержня в просвет улитки выступает костная спиральная пластинка (КСП), которая частично разделяет просвет примерно на 1/3-1/2 на всем протяжении спиралевидного хода. Поперечный разрез улитки имеет следующий вид:

Поперечный разрез улитки

1 – вестибулярная лестница, 2 – барабанная лестница, 3 – костная спиральная пластинка,

4 – базилярная мембрана, 5 – мембрана Рейснера, 6 – покровная пластинка (мембрана),

7 – улитковый проток, 8 – сосудистая полоска, 9 – волосковые клетки внутреннего ряда, 10 – волосковые клетки наружного ряда, 11 – нервные окончания, 12 – биополярные нейроны, 13 – аксоны слухового нерва

Между выступом костной спиральной пластинки (3) и противолежащей поверхности улиткового хода натянута базилярная мембрана (4), которая образована мягкими тканями БМ и дополняет костную спиральную пластинку, чем достигается полное разделение просвета улитки. Кроме нее, от костной спиральной пластинки отходит вестибулярная (преддверная) мембрана, которая называется мембраной Рейснера (5). Эта мембрана образует острый угол с базилярной мембраной, и она также направлена к наружной стенке улитки. Благодаря существованию БМ и ВМ, спиралевидный ход внутри улитки разделен на три параллельные канала, каждый из которых свернут в спираль. Один из них (нижний) расположен между стенкой улитки и БМ. Он называется БЛ, другой канал – ВЛ (1) заключен между верхней поверхностью улиткового хода и мембраной Рейснера. БЛ и ВЛ сообщаются на верхушке улитки. Место перехода одной лестницы в другую называют отверстием улитки или геликотремой (Г). Третий канал клиновидного сечения называется улитковым протоком (7), он расположен между БМ и мембраной Рейснера. Его третью стенку выстилает, так называемая, сосудистая полоска (8), с функционированием которой связано поддержание определенного химического состава жидкости – эндолимфы. Эндолимфа заполняет улитковый проток, и она по своим свойствам существенно отличается от перелимфы, находящейся в БЛ и ВЛ. Перелимфа сходна с межклеточной жидкостью, тогда как эндолимфа скорее напоминает цитозоль (по содержанию , вязкости и т.д.).

В эндолимфу погружены специальные клетки слуховых рецепторов, которые входят в состав Кортиева органа. Их опекальный полюс увенчан волосковоподобными выростами плазмолеммы (цилии). В этой связи эти клетки называются волосковыми клетками.

Наряду со слуховыми рецепторами в Кортиевом органе присутствуют разнообразные опорные клетки, относящиеся к вспомогательным элементам ВУ. Кортиев орган расположен на БМ, причем волосковые клетки ориентированы перпендикулярно этой мембране. В каждой из двух улиток уха человека содержится по 15500 волосковых клеток, из которых 3500 образуют внутренний ряд (9) и 12000- (3) наружных ряда (10). По форме волосковые клетки внутреннего ряда подобны эллипсоиду (1), вертикальная ось которого составляет в среднем примерно 40 мкм, а горизонтальная примерно 10 мкм. Наружная волосковая клетка имеет цилиндрическую форму (2).

Волосковые клетки

1 – внутреннего ряда, 2 – наружного ряда

На базальном полюсе волосковой клетки сосредоточены синопсы с терминальными веточками афферентных волокон, являющиеся периферическими отростками нейронов, тела которых находятся в спиральном ганглии (12). Центральные отростки этих биополярных нейронов формируют слуховой нерв (13), по которому сигналы от слуховых рецепторов поступают в головной мозг. Каждая волосковая клетка внутреннего ряда образует синопсы примерно с 10 нервными окончаниями, но каждое из окончаний контактирует только с одной клеткой. Афферентные волокна, иннервирующие волосковые клетки наружных рядов, сильно ветвятся, и каждое из них имеет синоптические входы от многих таких клеток. В этой связи, несмотря на обилие волосковых клеток в наружных рядах Кортиева органа, основная часть (примерно 95%) афферентных волокон слухового нерва млекопитающих отводит сигналы от волосковых клеток внутреннего ряда, которые и преобразуют энергию механических колебаний.

РАСПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ КОЛЕБАНИЙ

ВО ВНУТРЕННЕМ УХЕ

Под действием звука основание С колеблется, то вдвигаясь внутрь улитки, то выходя из нее. Таким образом энергия механических колебаний передается перелимфе ВЛ. Перелимфа может колебаться, благодаря двум обстоятельствам:

1. Жидкость, заполняющая ВЛ и БЛ, составляет одно целое, поскольку лестницы сообщаются на верхушке улитки, посредством Г.

2. Жесткий (костный) каркас, в который заключена гидравлическая система внутреннего уха, имеет окно не только на входе (ОО), но и на дальнем конце в БЛ (КО). КО затянуто мембраной. Оба окна «смотрят» в полость СУ. Поскольку мембрана КО обладает упругостью (эластичностью), начальное смещение перелимфы около ОО создает механическую волну, распределяющуюся вдоль улиткового протока, который заполнен эндолимфой.

Среда, в которой распределяются механические колебания внутри улитки – неоднородна. Она включает перелимфу, эндолимфу, разнообразные мембраны (БМ, ВМ и покровную мембрану), которые сами по себе являются композиционными материалами. Очень сложной биомеханической системой является БМ, с расположенным на ней Кортиевым органом. Инерционность БМ увеличивается от основания улитки к верхушке, тогда, как наиболее упругим ее участком является начальный (около ОО), а по направлению к Г эластичность понижается на два порядка.

Механические колебания внутри уха до настоящего времени не удалось описать математически, однако, при световой микроскопии даже небольшой части Кортиевого органа удалось наблюдать сложные колебания различных групп волосковых клеток. В целом, колебательный процесс, возникающий во внутреннем ухе под действием звуков, имеет характер бегущей волны. Волны такого типа образуются в нелинейной механической системе, являясь результатом интерференции различных колебаний, в которых приводятся различные элементы неоднородной механической среды. Другими словами, одно и то же воздействие вызывает неодинаковые колебания (с различными фазами и амплитудами, которые по-разному направлены) того или иного элемента нелинейной механической системы, в зависимости от его инерционных и упругих свойств. Вместе с тем, такие колебания когерентны, и, накладываясь друг на друга, они интерферируют. В результате их интерференции и образуется бегущая волна. В отличие от волновых процессов в однородной среде, бегущей волне не всегда свойственно максимальное смещение в начальном участке ее распределения и последующее угасание с определенным декрементом. Бегущая волна достигает своей максимальной амплитуды на различном удалении от входа в нелинейную механическую систему, а именно, в той области, где образуется интерфереционный максимум, при суперпозиции различный колебаний, которые возникают в неоднородной среде. Необходимо отметить, что местоположение максимального смещения в композиционной среде, при периферическом воздействии на нее механических сил, зависит от частоты сигнала.

Бегущая волна, возникающая в БМ под действием звуков НЧ, достигает максимального значения (амплитуды) ближе к ОО, тогда как звуки НЧ вызывают максимальное смещение тех участков БМ, которые находятся около Г. Звуковые тоны f = 1,6 кГц максимально смещают середину БМ человека. Таким образом, БМ, как композиционная среда с нелинейными механическими свойствами, функционирует наподобие системы фильтров, в которых расположение максимального отклика зависит от частоты звукового тона.

СЛУХОВАЯ РЕЦЕПЦИЯ

Благодаря зависимости, местоположение максимальной амплитуды бегущей волны на БМ от частоты вызывающей ее звукового тона, происходит распределение этих частот между различными участками Кортиевого органа. Его волосковые клетки возбуждаются, главным образом, в местах максимального смещения БМ, следовательно, звуковой тон каждой частоты возбуждает соответствующие слуховые рецепторы. В этой связи в У осуществляется первый этап частотного анализа звука, который основывается на пространственном разграничении участков БМ, колеблющихся с неодинаковой амплитудой, под действием звукового тона определенной частоты. Звуки пороговой интенсивности, вызывающие бегущие волны, амплитуда которых в Кортиевом органе не превышает м. При усилении звуков, амплитуда колебаний БМ больше этой величины всего на 1-2 порядка, следовательно, слуховой рецептор реагирует на ничтожные механические перемещения. Начало этой реакции связано с движением волосков (цилий) на опекальном полюсе волосковой клетки эти смещения обусловлены распределением бегущей волны по БМ. Среди цилий в каждой внутриволосковой клетке различают одну длинную (киноцилия) и множество (примерно 100-120) коротких (стереоцилий). Рецепция звука обусловлена воздействием механических усилий на стереоцилии.

Стереоцилии прикасаются к покровной мембране, которая имеет желеобразное состояние. Один край покровной мембраны закреплен на костной спиральной пластинке, а другой, свободный, нависает над свободными клетками. Модель изгиба стереоцилий под действием звуковых тонов, схематически можно представить в виде:

Модель изгиба стереоцилий под действием звука

КСП – костная спиральная пластинка; БМ – базилярная мембрана;

ПМ – покровная мембрана; СУ – стенка улитки, к которой прикрепляется базилярная мембрана; С – стереоцилии волосковой клетки

При совместных колебаниях БМ и ПМ происходит изгиб стереоцилий. Небольшое смещение их свободных концов приводит к значительной конформационной перестройке молекул плазмолеммы волосковой клетки в тех местах, где залегают «корни» изогнувшихся волосков, поскольку стереоцилиям присущи свойства микроочагов.

Конформации мембраных макромолекул обусловливают изменение проницаемостей для ионов и, следовательно, приводят к возникновению ионного тока через мембрану волосковой клетки. Это сопровождается сдвигом разности потенциалов на мембране, когда стереоцилии изгибаются в сторону киноцилий, рецепторная клетка деполяризуется. При их противоположном смещении наблюдается гиперполяризация. Только деполяризация волосковой клетки обеспечивает усиление импульсации в слуховом нерве, поэтому, именно деполяризационный сдвиг мембранного потенциала называется рецепторным потенциалом волосковой клетки – РП.

Уровень ПП волосковой клетки относительно межклеточной среды (перелимфы), находится в пределах от -50 до –70 мВ. Значение рецепторного потенциала зависит от интенсивности звука, и его величина составляет примерно 10 мВ. Максимальная величина РП, зарегистрированного с помощью микроэлектронной техники, составляет примерно 24 мВ. РП электротонически распределяется по плазмолемме волосковой клетки от ее опекального полюса к базальному. Там деполяризация приводит к высвобождению медиатора (определенное химическое вещество), поступающего далее через синоптическую щель на субсиноптическую мембрану, которая принадлежит чувствительному нервному окончанию, контактирующему с данной волосковой клеткой. Под действием медиатора, на

субсиноптической мембране возникает генераторный потенциал – ГП. Этот ГП электротонически распространяется на внесиноптические участки афферентных волокон, где вызывает образование ПД. В таком виде нервная импульсация направляется в ЦНС по слуховому нерву. Следовательно, по механизму преобразования адекватного стимула (звука) в нервные импульсы, слуховой рецептор является типичным представителем вторичночувствующих рецепторов.

Каждая волосковая клетка соединена с нервными окончаниями, при этом, каждое волокно слухового нерва начинается от узкого ограниченного участка Кортиевого органа, в отдельных случаях, от одной волосковой клетки. Поскольку слуховые рецепторы расположены в том или ином месте БМ возбуждается звуками определенных частот, то каждая небольшая группа нервных волокон слухового нерва проводит импульсы в ответ на звуки преимущественно одной частоты. Эта частота называется характерической частотой волокна. Если звук представляет собой сложные колебания, то в слуховом нерве активизируются все волокна, характерические частоты которых соответствуют гармоническому спектру сложного звука. Следовательно, на уровне слуховых рецепторов звуки разлагаются в гармонический спектр. Длительность звукового сигнала кодируется временем активации афферентных волокон, которые входят в состав слухового нерва.

РОЛЬ ЭНДОКОХЛИАРНОГО ПОТЕНЦИАЛА (ЭКП)

В СЛУХОВОЙ РЕЦЕПЦИИ

Между эндолимфой и перелимфой в У поддерживается разность потенциалов в пределах от 60 до 80 мВ. Эту разность называют ЭКП. Эндолимфа несет положительный потенциал относительно перелимфы. Источником ЭКП служит сосудистая полоска, выстилающая наружную стенку улиткового протока (8). Падение ЭКП наблюдается при нарушении кислородного снабжения сосудистой полоски, или при нарушении этой полоски (механическое повреждение).

Клетки, входящие в состав сосудистой полоски, содержат очень крупные митохондрии. Эта структурная особенность сосудистой полоски в совокупности с данными о роли ее в клеточном дыхании для поддержания разности потенциалов между эндолимфой и перелимфой, позволяют высказать предположение, что ЭКП по своей природе может быть аналогичен протонному потенциалу на митохондриальной мембране.

Звуки вызывают колебания ЭКП, амплитуда которых не превосходит 1% его постоянного уровня, то есть, эти колебания составляют 0,6-0,8 мВ. Это явление получило название микрофонного эффекта улитки, а сами колебания ЭКП принято называть микрофонными потенциалами. Микрофонный эффект У положен в основу телефонной теории слуха, согласно которой, частотный анализ звуков связан не с механическими колебаниями структур ВУ, а с возбуждением слуховых рецепторов микрофонными потенциалами. Частота этих потенциалов совпадает с гармоническим спектром звуковых тонов. В настоящее время ЭКП рассматривается, как важное условие нормального функционирования слуховых рецепторов, но не ведущий ее механизм.

Благодаря существованию ЭКП, поддерживается очень большая разность потенциалов (до 150 мВ) между эндолимфой и цитоплазмой волосковой клетки. Эта разность образуется в результате суммирования ПП волосковой клетки (разности потенциалов между ее цитоплазмой и перелимфой) и ЭКП.


Уровень электрических потенциалов волосковой клетки

По существу, разность потенциалов между эндолимфой и цитоплазмой волосковой клетки выполняет роль ее ПП, относительно которой генерируется рецепторный потенциал. Столь значительный ПП не имеет ни одна другая клетка в организме человека. Это высокая крутизна переднего фронта ЭКП делает плазмолемму волосковой клетки чрезвычайно нестабильной и способной давать резкие и быстрые сдвиги мембранного потенциала, при малых изменениях электрического сопротивления мембраны, которые происходят в ответ на незначительные смещения стереоцилий.

ОСНОВЫ ФИЗИОЛОГИЧЕСКОЙ АКУСТИКИ

Физической акустике принято сопоставлять объективные (физические) и субъективные (психологические) характеристики звука.

Физические характеристики звука Психологические характеристики звука
1. Гармонический спектр (характеризуется суммой всех частот ): а) основная гармоника; б) высшие гармоники. 1. Акустический спектр, характеризуется: а) основной тон (высота); измеряется в [мел] или [барк]; б) обертоны (тембр).
2. Интенсивность (плотность потока звуковой энергии), обозначается . 2. Громкость, измеряется в [сон].

Звук, при распределении в среде представляет собой волны сгущения и разряжения ее частиц. В участках сгущения давление больше, чем в участках разряжения. Амплитуда периодических колебаний давления в среде, происходящих под действием распространяющего звука, называют звуковым давлением – р. Оно имеет размерность [Па] или [ ] Звуковым давлением определяется интенсивность звука, которая определяется так:

P – давление;

v – скорость распределения звука в данной среде;

– плотность среды [ ].

– акустический импеданс среды.

Кроме того, I, как вектор Умова, можно рассчитать по формуле:

, если известна w – объемная плотность энергии звука, то есть, энергия, приходящаяся на единицу объема среды, в которой звук распространяется. Для установления взаимосвязи между интенсивностью и громкостью, вводятся еще две физические величины, которые характеризуют звук:

1. Уровень интенсивности – L.

2. Уровень громкости – Е.

L, или уровень звукового давления, определяется по формуле:

- эталонная интенсивность;

- любой исследуемый звук.

обычно выбирают меньше Вт/ . Такая интенсивность чистого тона, f = 1 кГц, установлена, как средний порог слуховой чувствительности для человека. Эта интенсивность соответствует звуковому давлению, равному Па. При к = 1, единицей уровня интенсивности L служит [Б] бел. При к = 10, единицей уровня интенсивности L служит [дБ], децибел. В медицине принято использовать децибельную шкалу. Если , то L = 0, следовательно, 3 величины и , и L=0 дБ – характеризуют один и тот же звук. При , L принимает положительно значение, при , L < 0. Чем меньше L, тем лучше (выше) слуховая чувствительность. Человек лучше всего слышит звуковые тоны с f от 3 до 4 кГц.

Уровень громкости (Е) – это выражение различий в восприятии человеком звуков разной частоты. Уровнем громкости звука данной f называют уровень интенсивности звукового тона с f = 1 кГц, громкость которого при сравнении на слух эквивалентна громкости исследуемого звука.

Размерность физической величины Е – фон, - для звуков, частотой f = 1 кГц, значение Е и L совпадают. Так, если первая из них L составляет 0 дБ, то Е = 0 фонов (на f = 1 кГц). Средний порог слухового восприятия у человека составляет примерно 4 фонов. Болевые ощущения в ухе возникают под действием звуков, уровень громкости которых достигает примерно 130 фонов. Таким образом, все, что слышит человек, ограничивается звуковыми тонами, частота которых находится в диапазоне от 16 Гц до 20 кГц, а Е – от 4 до 130 фонов.

Громкость звука является психологической (субъективной) характеристикой. Она оценивается по шкале сонов. Для выражения громкости того или иного звука в сонах, за эталон принимается звуковой тон с f = 1 кГц, при уровне интенсивности L = 40 дБ. Дав испытуемому послушать эталонный тон, врач предъявляет ему тестированный звук, при этом, он просит определить, во сколько раз тестируемый звук громче или тише эталонного. Так, например, громкость тестируемого звука, если он слышит в 2 раза громче эталонного тона, будет равен 2 сонам, а, если в 2 раза тише – то 0,5 сон.

ВЕСТИБУЛЯРНАЯ СЕНСОРНАЯ СИСТЕМА.

Вестибулярный анализатор участвует в регуляции положения и движения тела в пространстве, в поддержании равновесия и регуляции мышечного тонуса.

Периферический отдел анализатора представлен рецепторами, расположенными в преддверии улитки, находящейся внутри височной кости. На рис. 11 изображено взаимное расположение улитки и ее преддверия.

Рис. 11. Улитка и ее преддверие: 1 – височная кость; 2 – вертикальные полукружные каналы; 3 – горизонтальный полукружный канал; 4 – купула; 5 – макулы вестибулярного аппарата; 6 – улитка; 7 – полость среднего уха

Вестибулярные рецепторы возбуждаются при изменении скорости вращательного движения, прямолинейном ускорении, изменении направления силы тяжести, вибрации. Нервные импульсы, возникшие в этих рецепторах, поступают по вестибулярному нерву в ствол мозга, а оттуда по проводящим путям – к центральному отделу анализатора, расположенному в передних отделах височной доли коры головного мозга. В результате возбуждения нейронов этого отдела коры возникают ощущения, дающие представления о положении тела и отдельных его частей в пространстве, способствующие сохранению равновесия и поддержанию определенной позы тела в покое и при движении. При этом действуют особые механизмы трансформации внешней силы в механическое воздействие на так называемые волоски рецепторной клетки, выступающие из ее апикального полюса в эндолимфу. Поэтому рецепторные клетки называются волосковыми.

Будучи расположенными в полукружных каналах, они реагируют на угловые перемещения эндолимфы, а значит, и всего тела человека и животного. В преддверии улитки, кроме полукружных каналов, находятся еще две структуры: маточка и мешочек. Их волосковые клетки реагируют на прямолинейные перемещения тела.

Рецепторным органом маточки и мешочка (рис. 12, а) являются так называемые пятна. Волоски клеток, образующих пятна, направлены внутрь заполненной эндолимфой полости, где они погружены в желеобразную массу, заключающую в себе кристаллики кальциевых солей (камешки – отолиты). Вследствие своеобразия этих кристалликов пятна нередко называют отолитовым прибором.

При наклоне головы под действием силы земного притяжения происходит смещение отолитов, что ведет к сгибанию волосков. Сгибание волосков, как у других механорецепторных клеток, передает сигнал на контактирующие с рецепторной клеткой нервные окончания. Регистрация активности последних показала, что ритмическая импульсная активность генерируется рецептором и в том случае, когда волоски выпрямлены. При сгибании их в одну сторону она прекращается, а при сгибании в другую – учащается. Так как макулы мешочка и маточки расположены в разных плоскостях – одна примерно в горизонтальной, а другая – в вертикальной, то при любом положении головы в пространстве будет иметь место особое сочетание импульсной активности в иннервирующих их афферентных нервных волокнах, передающих в нервные центры информацию об этом положении.

Три полукружных канала, расположенные во взаимно перпендикулярных плоскостях, образуют декартову систему координат. Их механорецепторными органами являются так называемые гребешки, образованные волосками рецепторных клеток и желеобразной массой (рис. 12, б, в).

Рис. 12. Упрощенная модель вестибулярного аппарата: а - аппарат, воспринимающий линейные ускорения (1 - отолиты, 2 - отолитовая мембрана, 3 - волосковые клетки); б, в - аппарат, воспринимающий угловые ускорения (1 - ампула, 2 - купула, 3 - полукружный канал с перилимфой, 4 - волосковая клетка, 5 - гребешок); б в покое, в при угловом перемещении

Гребешки сосредоточены в расширениях (ампулах) каждого из трех каналов. Погруженные в желеобразную массу, гребешки перегораживают канал подвижной желеобразной перегородкой (купулой). Как показали прямые наблюдения, смещение купулы и, следовательно, сгибание или разгибание волосков происходит при перемещениях эндолимфы в канале. В свою очередь, такие перемещения возникают в случае ускорения или замедления вращения головы в плоскости, в которой расположен соответствующий канал (вследствие инерции эндолимфы). При переходе вращения в равномерное купула медленно возвращается в свое исходное положение. Таким образом, эта рецепторная система оказывается сенсором вращательного ускорения. Она сигнализирует о нем разрядом импульсов, частота которого уменьшается и приобретает стационарный характер при переходе к равномерному вращению или к покою. В физиологических условиях ускорения вращения являются постоянно встречающимися раздражителями, возникающими при каждом движении головы. Равномерное же вращение – состояние, как правило, искусственное, возникающее в связи с развитием техники, поэтому оно и не является адекватным раздражителем для сенсорных клеток полукружных каналов.





Дата публикования: 2014-11-04; Прочитано: 359 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...