Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Возникновение и передача возбуждения в рецепторах



Рецепторы по происхождению могут быть первичными (первичночувствующими) и вторичными (вторичночувствующими). В первичных рецепторах воздействие воспринимается непосредственно свободными или несвободными (более специализированными) нервными окончаниями чувствительных нейронов (рецепторы кожи, скелетных мышц, внутренних органов, органов обоняния).

Во вторичных рецепторах между раздражителем и окончанием чувствительного нейрона располагаются специализированные рецепторные клетки эпителиальной или глиальной природы.

Механизм генерации нервного импульса в рецепторах и его передачи по нервному волокну как в первичных, так и во вторичных рецепторах одинаков, хотя форма взаимодействия адекватного раздражителя с мембраной рецептора может быть различной (деформация мембраны у механорецепторов, возбуждение квантами света фотопигмента мембраны у фоторецепторов и т.п.). Однако во всех случаях это приводит к одному результату: повышению ионной проницаемости мембраны, проникновению натрия внутрь клетки, деполяризации мембраны и генерации так называемого рецепторного потенциала (РП).

Местом возникновения РП может быть либо само нервное окончание (в первичных рецепторах), либо отдельные рецепторные клетки, образующие с чувствительными окончаниями химические синапсы (во вторичных рецепторах).

Рецепторный потенциал проявляется в снижении мембранного потенциала покоя, т.е. частичной деполяризации мембраны (с 80 до - 30 мВ). Это снижение потенциала строго локально и оно возникает только в том участке мембраны, где действует раздражитель, пропорционально его интенсивности. В первичных рецепторах РП, превысивший пороговозбуждения, трансформируется в потенциал действия нервного волокна. Во вторичных рецепторах РП вызывает высвобождение химического медиатора, деполяризующего мембрану постсинаптического нервного волокна. В последнем возникает генераторный потенциал, переходящий в потенциал действия.

В принципе возникновение и передача возбуждения в рецепторах осуществляется тем же механизмом и в той же последовательности, что и в нервно-мышечном синапсе.

Однако возникающие здесь нервные импульсы распространяются центростремительно и несут информацию в анализирующие (сенсорные) центры ЦНС.

Всем рецепторам присуще свойство адаптации к действию раздражителя. Скорость адаптации у разных рецепторов различна. Одни из них (рецепторы прикосновения) адаптируются очень быстро, другие (хеморецепторы сосудов, рецепторы растяжения мышц) - очень медленно.

Торможение в центральной нервной системе. Сеченовское торможение.

Для животных роль условных сигнальных раздражителей играют предметы и явления (свет, звук, температура) окружающего мира. Для человека значение сигнала приобретает слово. Оно является таким же реальным условным раздражителем, как и любой предмет или явление природы. У голодного человека "слюнки текут" не только при виде пищи, но и при разговоре о ней. Слово может заменить все природные раздражители и вызвать те же самые реакции, которые они вызывают. Слово и речь составляют вторую сигнальную систему действительности, свойственную только человеку. Могут возразить, что слова понимают собаки, лошадь, а птицы - скворцы, вороны, попугаи - даже разговаривают. Но для животных слово - это комплекс звуков, звуковой раздражитель. Для человека слово - это понятие. Слово для человека не только условный раздражитель, обо всем сигнализирующий и могущий вызвать любую деятельность, но и принципиально новый сигнал. При помощи слов образуются общие понятия, возникает словесное человеческое мышление.

Как возникает вторая сигнальная система? Совместная трудовая деятельность рождает речь как средство общения между людьми, как межлюдская сигнализация. Работа неизбежно рождает речь, нет ни одного народа, у которого не было бы словесной речи.

Слово, слышимое, видимое (письменная речь), осязаемое (азбука для слепых), произносимое (кинестетические ощущения, возникающие в мышцах языка, глотки, гортани, когда мы говорим), становится второй сигнальной системой.

У человека громадное большинство временных связей образуется с помощью второй сигнальной системы, с помощью речи. Человек в отличие от животного необязательно сам знакомится с предметом или явлением природы. Речь устная и особенно письменная создала условия для передачи и хранения знаний. Язык, будучи средством общения, становится орудием борьбы и развития общества, так как закрепляет в словах результаты человеческого мышления, создает науку и тем обеспечивает прогресс культуры.

Для развития второй сигнальной системы человека решающее значение имеют первые 6 лет жизни. Описаны случаи, когда находили детей, выросших в логове зверей, чаще волков, иногда медведей и обезьян. Если ребенка находили после 6 лет, он уже не поддавался обучению, не выучивался говорить, оставался диким.

Для образования каждого навыка существует определенное время, когда он легче всего вырабатывается. Выучить иностранный язык легче всего в дошкольном возрасте.

Корковое торможение

В нервной деятельности взаимодействуют два процесса: возбуждение и торможение. Эти два антагонистических, но неразрывно связанных активных процесса И. П. Павлов называл подлинными творцами нервной деятельности.

Возбуждение участвует в образовании условного рефлекса и в его осуществлении. Роль торможения более сложна, разнообразна. Именно процесс торможения делает условные рефлексы механизмом тонкого, точного и совершенного приспособления к окружающей среде.

По И. П. Павлову, коре свойственны два вида торможения: безусловное и условное. Безусловное не требует выработки, возникает сразу. Условное торможение вырабатывается в процессе индивидуального опыта.

Виды торможения по И. П. Павлову:

I. Безусловное (внешнее). Внешний или гаснущий тормоз.

II. Условное (внутреннее).

1. Угасание.

2. Дифференцировка.

3. Запаздывание.

4. Условный тормоз.

Безусловное торможение

Начнем с фактов. Сотрудник выработал у собаки прочный условный рефлекс на свет и хочет показать его на лекции. Опыт не удается - рефлекса нет. Шум многолюдной аудитории, новые сигналы полностью выключают условнорефлекторную деятельность, возникает новая доминанта, новая работа коры. Такое торможение условных рефлексов под действием посторонних раздражителей называется внешним торможением. Оно врожденное, а поэтому безусловное. Гаснущим тормозом его называют потому, что если собаку выводят в аудиторию несколько раз, то новые сигналы, оказавшиеся биологически безразличными, угасают и условные рефлексы осуществляются беспрепятственно. Также артист постепенно выучивается свободно держаться на сцене.

Условное торможение

Для внутреннего условного торможения характерно то, что оно такое же временное и условное, как и сам условный рефлекс. Оно вырабатывается, приобретается в индивидуальной жизни и играет особую роль в условнорефлекторной деятельности. Все виды внутреннего торможения вырабатываются одним способом - путем неподкрепления условного раздражителя безусловным. Если пищевой условный раздражитель - звонок - многократно не подкреплять пищей, то условная реакция исчезнет, вырабатывается угасательное торможение. Его биологическое значение в том, что на сигналы, которые не сопровождаются безусловными, т. е. жизненно важными, раздражителями, животное не развивает бесполезной деятельности. Однако угасание - отнюдь не исчезновение временной связи. Угасший рефлекс при подкреплении может быть быстро восстановлен. Этим доказывается, что угасание - результат активного процесса торможения.

Дифференцировочное торможение

Вырабатывается в том случае, если один сигнальный раздражитель, например нота "до", подкрепляется безусловным раздражителем, а нота "соль" нет. После некоторого числа применений собака будет точно реагировать на раздражитель: "до" будет вызывать положительный условный рефлекс, а "соль" - тормозной, отрицательный. Следовательно, Дифференцировочное торможение обеспечивает тонкий анализ окружающего мира. Красный свет светофора, гудок машины, вид испорченной пищи, мухомора - это все раздражители, на которые выработаны отрицательные, тормозные условные рефлексы, задерживающие реакцию организма.

Запаздывающее торможение

Точно приурочивает безусловный рефлекс ко времени действия безусловного раздражителя. Например, включается свет, а подкрепление пищей дается только через 3 мин. Отделение слюны, после того как выработалось запаздывающее торможение, начинается к концу 3-й минуты. Собака "не слюнит" бесполезно. Условный раздражитель вначале вызывает в коре: торможение, которое только перед действием безусловного раздражителя сменяется возбуждением.

Условный тормоз также способствует гибкости, точности условных рефлексов. Поясним его на примере одного из опытов И. П. Павлова. Обезьяне Рафаэлю высоко под потолком подавалась корзиночка с фруктами. Чтобы достать фрукты, он должен был построить пирамиду из ящиков. В некоторых опытах перед появлением корзиночки появлялся серый круг и в этом случае корзиночка была пуста. После нескольких таких сочетаний - круга и корзиночки - и бесполезных попыток получить фрукты Рафаэль, прежде чем начать постройку пирамиды, внимательно смотрел, не появляется ли круг, который приобрел для него значение условного тормоза. Условным тормозом можно сделать любой раздражитель. После этого подача его перед любым положительным раздражителем вызывает торможение рефлексов. Условное торможение является основой отрицательных, тормозных условных рефлексов, выключающих реакцию организма на раздражители, не имеющие биологического значения.

Запредельное торможение

Если безусловное и условное торможение играет координационную роль, т. е. выключает все рефлексы, мешающие осуществлению нервной деятельности, необходимой в данный момент, то роль запредельного торможения совсем иная. В известных пределах чем сильнее раздражение, тем сильнее вызываемое им возбуждение. Этот закон носит название закона силовых соотношений. Однако если раздражитель настолько силен, что под его действием может произойти истощение, поломка и даже гибель нервной клетки, то на помощь приходит охранительное торможение. Чрезмерно сильный раздражитель вызывает в коре не возбуждение, а торможение. Этот особый вид торможения открыт И. П. Павловым и назван охранительным, так как охраняет нервные клетки от чрезмерного возбуждения.

Понятие о мотонейронах. Нейромоторные единицы.

Нервная система – комплекс анатомических структур, обеспечивающих индивидуальное приспособление организма к внешней среде и регуляцию отдельных органов и тканей.

Нервная система подразделяется на центральную (головной и спинной мозг) и периферическую (нервные корешки, нервные стволы, нервные сплетения, нервные узлы, нервные окончания).

Структурной единицей нервной системы является нервная клетка – нейрон. В периферической нервной системе нейроны образуют нервные узлы – ганглии, а отростки нервных клеток – нервные волокна. Нервные волокна в различной степени покрыты миелиновыми оболочками. Тонкие пучки нервных клеток окружены периневрием, а нервные корешки, стволы и нервы - эпиневрием. Пучки нервных волокон складываются в нервы.

По одним из них – чувствительным (сенсорным) – импульсы от нервных окончаний поступают в головной и спинной мозг. По другим - двигательным (моторным) – импульсы от головного и спинного мозга передаются мышцам и железам. Важнейшим свойством нейрона является его способность приходить в состояние возбуждения. Физиологические свойства нервных клеток, механизмы их взаимосвязей и влияний на различные органы и ткани определяют основные функции нервной системы. Нервное волокно состоит из аксона (нейрита, по которому нервный импульс идёт центрифугально от тела клетки к рабочему органу) и окружающих его шванновских клеток (леммоцитов), образующих неврилемму. Длина аксона может превышать длину клетки в несколько сотен раз.

Длина клетки измеряется в микрометрах. Неврилемма располагается кнаружи от миелинового слоя нервного волокна. На относительно правильных промежутках миелиновая обкладка прерывается, и нервное волокно разделяется на сегменты. Каждый сегмент образован одним леммоцитом. Между сегментами имеются промежутки, в которых отсутствует миелиновая оболочка (перехваты Ранвье); именно в этих местах активно происходят обменные процессы, способствующие проведению нервного импульса по аксону. Структура нервных волокон неоднородна. Большинство нервов содержит миелинизированные и немиелинизированные или слабо миелинизированные волокна с неодинаковым соотношением их между собой. Клеточный состав эндоневральных пространств отражает уровень миелинизации. Миелинизированные волокна большого диаметра проводят импульсы в значительно более быстром темпе, чем остальные.

Наличие такой корреляции послужило основой для создания ряда морфолого – физиологических классификаций. В зависимости от толщины и скорости проведения импульса все нервные волокна делят на три группы (A, B, C,). Волокна группы А также делят на подгруппы (альфа, бета, гамма). Подгруппа А-альфа включает толстые миелиновые нервные волокна (диаметр 12 – 22 мкм), проводящие возбуждение со скоростью 70 – 100 м/с. Они относятся к эфферентным двигательным волокнам, берущих начало от мотонейронов спинного мозга и направляющимся к скелетным мышцам.

Волокна подгруппы бета, гамма имеют меньший диаметр и меньшую скорость возбуждения. В основном они являются афферентными, проводящими импульсы от тактильных, температурных и болевых рецепторов. Нервные волокна группы В относятся к тонким миелиновым волокнам (диаметр 1 - 3 мкм), имеющим скорость проведения импульса 13 – 14 м/с. Они принадлежат к преганглионарным волокнам вегетативной нервной системы. Тонкие безмиелиновые нервные волокна группы С имеют диаметр не более 2 мкм и скорость проведения импульса 1 – 2 м/с. В эту группу входят постганглионарные волокна симпатической нервной системы, а также афферентные волокна от некоторых болевых, холодовых, тепловых рецепторов и рецепторов давления. Нервные волокна всех групп характеризуются общими закономерностями проведения возбуждения. Нормальное проведение возбуждения по нервному волокну возможно только при его анатомической и физиологической целости, обеспечивающей сохранность механизмов проведения импульса. Все нервные волокна в нервном стволе проводят возбуждения изолированно друг от друга в любом направлении, но благодаря наличию синапсов (контактных зон между клетками) с односторонней проводимостью, возбуждение всегда распространяется в одном направлении – от тела нейрона по аксону к эффектору.





Дата публикования: 2015-11-01; Прочитано: 605 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...