Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Напряжение при растяжении (сжатии) призматических стержней. Расчет на прочность



Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начнем с деформации растяжения (сжатия).

Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор - продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2, б).

Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня.

Тогда продольная сила N " равная сумме проекции внутренних сил, действующих в данном поперечном сечении площадью F (рис. 4) очевидно будет равна

Это соотношение является уравнением равновесия статики, связывающим продольную силу Nz, и нормальное напряжение , которое в общем случае является функцией координат х и у и поэтому не может быть найдено из одного лишь 1 уравнения статики. Таким образом, задача определения напряжений даже в самом простом случае деформирования стержня (растяжении или сжатии) оказывается статически неопределимой.

Необходимое для решения этой задачи дополнительное уравнение вытекает из гипотезы плоских сечений. Поскольку поперечные сечения стержня, оставаясь плоскими и перпендикулярными к оси стержня, в процессе деформирования лишь поступательно перемещаются вдоль оси стержня (что приводит к одинаковому удлинению всех продольных волокон), то приходим к уравнению =const, из которого ввиду однозначности связи  и  (для линейно-упругого материала это - закон Гука: =Е.) вытекает, что

= const.

Решая совместно уравнения получим, что Nz=F или

= Nz / F.

Таким образом, при растяжении (сжатии) призматического стержня нормальные напряжения равномерно распределены по поперечному сечению, а касательные напряжения в сечениях отсутствуют, что является следствием гипотезы плоских сечений. Указанное, несмотря на, казалось бы, очевидность и простоту, является фундаментальным результатом, справедливым, строго говоря, лишь для призматического стержня. Однако в инженерной практике его используют и для приближенной оценки нормальных напряжений в стержнях переменного сечения. При этом, чтобы погрешность формулы была невелика, необходимо, чтобы площадь поперечного сечения стержня изменялась достаточно плавно вдоль его оси.

Условие прочности при растяжении (сжатии) призматического стержня для стержня из пластического материала (т. е. материала, одинаково работающего на растяжение и сжатие) будет иметь вид:

(1)

где [] - допускаемое напряжение. Напряжение  в условии (1) подставляется по модулю, так как знак  в этом случае роли не играет. Для стержней из хрупких материалов, неодинаково сопротивляющихся растяжению и сжатию, знак напряжения имеет принципиальное значение, и условие прочности приходится формулировать отдельно для растяжения и сжатия

где р и с - напряжения растяжения и сжатия, а [р] и [с] - ответствующие им допускаемые напряжения.

В практике инженерных расчетов, исходя из условия прочности, решаются три основные задачи механики материалов конструкций. В применении к случаю растяжения (сжатия) призматического стержня эти задачи формулируются следующим образом.

Проверка прочности (поверочный расчет). Этот расчет проводится, если нагрузка (в нашем случае ее представляет Nz), сечение стержня F и его материал [] заданы.

Необходимо убедиться, что выполняется условие прочности

Проверочный расчет заключается в том, что определяется фактический коэффициент запаса прочности n и сравнивается с нормативным коэффициентом запаса [n]:

где * - предельное (или опасное) напряжение, т. е. напряжение, вызывающее отказ элемента конструкции (напомним, что, например, для стержня из пластичного материала это-предел текучести sт или условный предел текучести 0,2).

Подбор сечения (проектный расчет). В этом расчете по Заданной нагрузке (Nz) определяются размеры поперечного сечения стержня (F) из заданного материала ([] дано). Минимальное значение F получим, если в условии прочности (1) принять знак равенства:

[F] = Nz / []

Определение допускаемой нагрузки, то есть максимального значения нагрузки, которое допускает данный элемент конструкции (F и [] даны) при выполнении условия прочности (1)

26.

1. Рассмотрим произвольную плоскую фигуру F (рис. 1.1), связанную с системой координат.

2. Рассмотрим точку с координатами x и y, принадлежащую этой фигуре.

3. Выделим вокруг этой точки элементарную площадку dF.

Рис. 1.1. К определению статического момента.

4. По аналогии с выражением для момента силы, относительно какой-либо оси можно составить выражение для момента площади. которое называется статическим моментом.

Для площади dF статический момент, относительно оси OX – произведение элемента площади dF (части площади фигуры F) на его расстояние от оси OX.

Статический момент элемента площади относительно OY:

5. Просуммировав эти статические моменты элементов площади по всей площади F, получим статические моменты площади фигуры относительно осей x и y:

;

,

Размерность статического момента: [S]=[L3], [м3].

Центр тяжести.

Продолжим аналогию с моментами сил. На основании теоремы о моменте равнодействующей силы можно заключить, что есть такая точка в которой:

,

где ycF и xcF – статические моменты, определённые для всей площади F, как для элемента площади. Эта точка – центр тяжести С. Соответственно xc и yc – координаты центра тяжести.

Координаты центра тяжести можно определить по следующим зависимостям:

,

.

Статический момент, определённый относительно оси, проходящей через центр тяжести равен нулю.

Действительно, если Sx= ycF и Sy= xcF, при осях, проходящих через центр тяжести xc=0, yc=0 и, следовательно, Sx=0 и Sy=0.

Для иллюстрации этого определим статический момент для прямоугольника высотой h и шириной b. Рассмотрим определение статического момента только относительно оси OX (аналогичные рассуждения можно провести и для величины Sy).

Рис. 1.2.

Рассмотрим фигуру F (рис.1.2).

Выделим элементарную площадку dF на расстоянии dy от оси OX шириной b.

Статический момент элемента dF площади F относительно оси OX:

Статический момент фигуры F относительно оси OX:

(интегрируем по площади F с учётом, что при перемещении вдоль координаты y ширина фигуры F постоянна; нижняя грань ограничена прямой y1=0, верхняя грань – y2=h.)

Теперь определим величину Sx для этой фигуры относительно горизонтальной оси (параллельной OX), проходящей через центр тяжести (рис 1.3). Известно, что центр тяжести прямоугольника располагается на пересечении диагоналей, и, таким образом:

.

Рис. 1.3.

Статический момент, относительно любой оси равен статическому моменту относительно какой-либо оси, параллельной данной, плюс произведение площади фигуры на расстояние между этими осями.

,

где Sx – статический момент относительно оси OX.

Sx1 – статический момент относительно оси O1X1, параллельной оси OX.

a – расстояние между осями OX и O1X1.

Для иллюстрации этого утверждения определим статический момент прямоугольной фигуры относительно оси OX1, проведённой на расстоянии а, параллельно оси OX (рис. 1.4).

I Способ.

,

так как

,

, (а = const вдоль всей площади F).

Рис. 1.4.

II Способ.

поскольку, в данном случае интегрируем по площади F с учётом, что при перемещении по вертикали y1 изменяется от а до a+h в пределах F.

Определим статический момент относительно оси OX для треугольника АВС (рис 1.5).

Для вычисления интеграла по площади треугольника сформулируем функцию изменения ширины треугольника (расстояния между АВ и ВС):

,

где h – высота рассматриваемого треугольника.

b – ширина основания треугольника АВС.

Таким образом, площадь элемента dF равна:

.

Рис. 1.5.

Статический момент относительно оси OX:

Определим вертикальную координату центра тяжести треугольника АВС.

,

т.е. центр тяжести треугольника расположен на расстоянии одной трети высоты от его основания.

Для вычисления статических моментов сложной фигуры её разбивают на простые части (рис. 1.6). Если для каждой из таких простых частей известны площадь и положение центра тяжести, то статические моменты можно определить по зависимостям:

Рис. 1.6. Вычисление статического момента сложной фигуры.

индексные обозначения ясны из рис.1.6.

В общем случае, для n – количества простых частей:

И координаты центра тяжести:

28. Главные оси инерции и главные моменты инерции.

Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них

Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси.

Рис.1. Расчетная модель для определения положения главных осей инерции.

В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю:

или

откуда:

(1)

Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей, составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .

Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить

(2)

Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .

Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1):

Заменяя здесь из формулы (1) дробь на

получаем

(3)

К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).

За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz, а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и — через , и . В результате получаем:

По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J) от начального положения оси у:

Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , и после этого следует найти по формуле (14.17) величину угла и вычислить главные центральные моменты инерции и по формулам (14.18).

Рис.2. Расчетная модель нахождения положения главных осей.

Далее, можно найти момент инерции относительно любой центральной оси (Рис.2), наклоненной к под углом :

Зная же центральный момент инерции , можно сейчас же найти момент инерции относительно любой параллельной ей оси , проходящей на расстоянии (рис.2) от центра тяжести:

Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом , представляющим собой центробежный момент инерции сечения относительно осей у и z; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.

Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и и центробежный момент его относительно тех же осей.

Рис.3. Пример расчета моментов инерции.

Центральные оси у и z как оси симметрии будут главными осями; моменты инерции сечения относительно этих осей равны:

Центральные моменты относительно повернутых осей и равны:

Центробежный момент инерции относительно осей и равен:

Координаты центра тяжести прямоугольника относительно осей и равны:

Моменты инерции относительно осей и равны:

Центробежный момент инерции равен:





Дата публикования: 2015-11-01; Прочитано: 1247 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.025 с)...