Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Правила Кирхгофа. Расчет разветвленных электрических цепей



Электрическая цепь представляет собой совокупность источников тока, проводников и потребителей электроэнергии. Электрическая цепь чаще всего является разветвленной (сложной) и содержит узлы (рис. 1).

Рис. 1

Для расчета разветвленных цепей постоянного тока применяют правила Кирхгофа.

Согласно первому правилу Кирхгофа:

алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

∑ n i=1 I i =0,

где n — число проводников, образующих узел.

При этом токи считаются положительными, если они входят в узел, и отрицательными, если выходят из узла. Для узла, изображенного на рисунке 1, I 1 - I 2 - I 3 = 0.

Согласно второму правилу Кирхгофа:

в любом простом замкнутом контуре, произвольно выбираемом в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков равна алгебраической сумме ЭДС, имеющихся в контуре:

∑ n k=1 I k R k =∑ m i=1 ε i,

где m — число источников в контуре, n — число сопротивлений в нем.

Если направления токов совпадают с выбранным направлением обхода контура, то силы токов I k считаются положительными. ЭДС ε i считаются положительными, если они создают токи, сонаправленные с направлением обхода контура.

Правила Кирхгофа не выражают никаких новых свойств стационарного электрического поля в проводниках с током по сравнению с законом Ома. Первое из них является следствием закона сохранения электрических зарядов, второе — следствием закона Ома для неоднородного участка цепи. Однако их использование значительно упрощает расчет токов в разветвленных цепях.

Расчет разветвленной электрической цепи постоянного тока выполняется в следующем порядке:

1. произвольно выбирают направление токов во всех участках цепи:

2. записывают n - 1 независимых уравнений, согласно первому правилу Кирхгофа, где n — количество узлов в цепи;

3. выбирают произвольно замкнутые контуры так, чтобы каждый новый контур содержал хотя бы один участок цепи, не входящий в ранее выбранные контуры. Записывают для них второе правило Кирхгофа.

В разветвленной цепи, содержащей n узлов и m участков цепи между соседними узлами, число независимых уравнений, соответствующих правилу контуров, составляет mn + 1.На основе правил Кирхгофа составляют систему уравнений, решение которой позволяет найти силы токов в ветвях цепи.

32) вектор магнитной индукции. Принцип суперпозиции. Линии индукции магнитного поля

Магни́тная инду́кция — векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу буравчика).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл)

1 Тл = 104 Гс

Магнитное поле

В отличии от заряда покоящегося, который создает вокруг себя электрическое поле, заряд движущийся создает вокруг себя также магнитное поле.

Экспериментально установлено, что: 1. Магнитное поле поражается электрическим током (движущимися зарядами). 2. Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).  


Магнитное поле создается постоянными магнитами или проводниками по которым течет постоянный ток. Вектор магнитной индукции B является важнейшей характеристикой магнитного поля. Линии магнитной индукции - это линии, касательные к которым направленны также как и вектор В в данной точке. В отличии от силовых линий электростатического поля: линии магнитной индукции замкнуты. Магнитное поле является вихревым. В нем работа при перемещении по замкнутой траектории не равна нулю, а зависит от формы траектории (в отличии от электростатического поля или поля тяжести Земли).

Для магнитных полей справедлив принцип супер позиции, дадим его определение.

Определение. Принцип супер позиции. В любой точке поля вектор магнитной индукции результирующего поля равен сумме векторов полей, создаваемых каждой точкой в отдельности: .

33)Сила Лоренца и сила Ампера

Сила Лоренца

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Лоренца определяется соотношением:

Fл = q · V · B · sin

где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
 - угол между вектором скорости заряда и вектором магнитной индукции.

Сила Лоренца перпендикулярна векторам В и v, и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера.

Сила Лоренца зависит от модулей скорости частицы и индукции магнитного поля. Эта сила перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы. Частица равномерно движется по окружности радиуса r.

Сила Ампера





Дата публикования: 2015-11-01; Прочитано: 734 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...