Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Равноускоренное прямолинейное движение. Ускорение



Такое прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, называют равноускоренным прямолинейным движением.

Быстроту изменения скорости характеризуют величиной, обозначаемой а и называемой ускорением. Ускорением называют векторную величину, равную отношению изменения скорости тела v-v0 к промежутку времени t, в течение которого это изменение произошло:

a=(v-v0)/t. (1.9)

Здесь V0 - начальная скорость тела, т. е. его мгновенная скорость в момент начала отсчета времени; v - мгновенная скорость тела в рассматриваемый момент времени.

Из формулы (1.9) и определения равноускоренного движения следует, что в таком движении ускорение не изменяется. Следовательно, прямолинейное равноускоренное движение есть движение с постоянным ускорением (a=const). В прямолинейном равноускоренном движении векторы v0, v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов, и формулу (1.9) можно записать в виде

a=(v-v0)/t. (1.10)

Из формулы (1.10) устанавливается единица ускорения.
В СИ единицей ускорения является 1 м/с2 (метр на секунду в квадрате); 1 м/с2 - это ускорение такого равноускоренного движения, при котором за каждую секунду скорость тела увеличивается на 1 м/с.

4)Первое начало термодинамики выражает универсальный закон сохранения энергии применительно к задачам термодинамики. В наиболее простой форме его можно записать как

,

где есть полный дифференциал внутренней энергии системы, а и есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно. Нужно учитывать, что и нельзя считать дифференциалами в обычном смысле этого понятия, поскольку эти величины существенно зависят от типа процесса, в результате которого состояние системы изменилось.

В литературе можно встретить и другие варианты приведённого выше соотношения, отличающиеся от него знаками ( или ) перед и . Отличия вызваны тем, что конкретный вид этого уравнения зависит от соглашений, называемых «правилами знаков для работы и теплоты»[18]. Выше использовано «теплотехническое правило знаков для работы» (положительной считают работу, совершаемую системой, когда она отдаёт энергию, а отрицательной — работу, совершаемую над системой, когда она получает энергию) и «термодинамическое правило знаков для теплоты» (положительной считают теплоту, получаемую системой, а отрицательной — теплоту, отдаваемую системой). В «термодинамическом правиле знаков для работы» положительной считают работу, совершаемую над системой, а отрицательной — работу, совершаемую системой. Наконец, в «термохимическом правиле знаков для теплоты» положительной считают теплоту, отдаваемую системой, а отрицательной — теплоту, получаемую системой. Мнемоническое правило: в термодинамической системе знаков имеет тот же знак, что и энергия, передаваемая системе в виде работы или теплоты; в остальных случаях знак противоположен знаку передаваемой энергии. Стандарта, предписывающего использовать конкретный набор правил знаков, не существует, так что уместно рассматривать только степень распространённости того или иного правила в научной и учебной литературе. По этому поводу однозначно можно говорить лишь о том, что в современной литературе предпочитают использовать термодинамическое, а не термохимическое правило знаков для теплоты.

Иногда в рассматриваемое выражение для первого начала наряду с работой и теплотой включают ещё и работу переноса массы (химическую работу), выделяя её из общего выражения для работы в отдельное слагаемое

5)Движение точки по окружности может быть очень сложным

Рассмотрим подробно движение точки по окружности, при котором v = const. Такое движение называется равномерным движением по окружности. Естественно, вектор скорости не может быть неизменным (v не равно const), так как направление скорости постоянно меняется.

Время, за которое траектория точки опишет окружность, называется периодом обращения точки (Т). Число оборотов точки в одну секунду называется частотой обращения (v).

\6)Вну́тренняя эне́ргия термодинамической системы (обозначается как E или U) — это сумма энергий теплового движения молекул и межмолекулярных взаимодействий. В аксиоматической термодинамике движение молекул не рассматривается, и внутренняя энергия термодинамической системы определяется как функция состояния системы, приращение которой в любом процессе для адиабатически изолированной системы равно работе внешних сил при переходе системы из начального состояния в конечное

6) Идеальные газы

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

,

где — количество вещества, — изменение температуры.

Для идеального газа внутренняя энергия равна:

,

где - количество степеней свободы, - универсальная газовая постоянная.

7) Первый закон Ньютона постулирует существование инерциальных систем отсчета. Поэтому он также известен как Закон инерции. Инерция — это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой. Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность — это свойство тел сопротивляться изменению их скорости. Величина инертности характеризуетсямассой тела.

7) Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этогоускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами

8)Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

9)Ньютона закон тяготения, закон всемирного тяготения, один из универсальных законов природы; согласно Н. з. т. все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от физических и химических свойств тел, от состояния их движения, от свойств среды, где находятся тела. На Земле тяготение проявляется прежде всего в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин "гравитация" (от лат. gravitas — тяжесть), эквивалентный термину "тяготение".

9)Зако́ны Ке́плера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , — массы планеты и Солнца соответственно.

9)Сила тяжести, действующая на любую материальную частицу, находящуюся вблизи земной поверхности, сила Р, определяемая как геометрическая сумма силы притяжения Земли F и центробежной (переносной) силы инерции Q учитывающей эффект суточного вращения Земли (см. рис.). Направление С. т. является направлением вертикали в данной точке земной поверхности, а перпендикулярная к ней плоскость — горизонтальной плоскостью; углы l и j определяют соответственно геоцентрическую и астрономическую широты.

10)Электрическое поле, частная форма проявления (наряду с магнитным полем) электромагнитного поля, определяющая действие на электрический заряд силы, не зависящей от скорости его движения. Представление об Э. п. было введено в науку М. Фарадеем в 30-х гг. 19 в. Согласно Фарадею, каждый покоящийся заряд создаёт в окружающем пространстве Э. п. Поле одного заряда действует на другой заряд, и наоборот; так осуществляется взаимодействие зарядов (концепция близкодействия). Основная количественная характеристика Э. п. — напряжённость электрического поля Е, которая определяется как отношение силы F, действующей на заряд, к величине заряда q, Е = F/q. Э. п. в среде наряду с напряжённостью характеризуется вектором электрической индукции (см. Индукция электрическая и магнитная). Распределение Э. п. в пространстве наглядно изображается с помощью силовых линий напряжённости Э. п. Силовые линии потенциального Э. п., порождаемого электрическими зарядами, начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии вихревого Э. п., порождаемого переменным магнитным полем, замкнуты.

10)напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:

U=A/q,

где U - напряжение,
A – работа, совершенная током по перемещению заряда q на некий участок цепи.

11)И́мпульс (Количество движения) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

.

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией — однородностью пространства.

11) вес тела больше силы тяжести, P=mg+ma
вес тела меньше силы тяжести, P=mg-ma
невесомость, вес тела равен нулю, P=0

12) соединение проводников в электрической цепи

Последовательное и параллельное соединения в электротехнике — два основных способа соединения элементовэлектрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одного узла. При параллельном соединении все входящие в цепь элементы объединены двумя узлами и не имеют связей с другими узлами, если это не противоречит условию.





Дата публикования: 2015-11-01; Прочитано: 315 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...